Robert C. Krencik

Robert C. Krencik, PhD

Assistant Professor of Neurosurgery, Academic Institute
Assistant Member, Research Institute
Houston Methodist
Weill Cornell Medical College

Astrocellular Therapeutics Lab


Dr. Krencik received his PhD in neuroscience at the University of Wisconsin-Madison under the supervision of Dr. Su-Chun Zhang. During this time, he devised the first cellular system for the efficient generation of human glial progenitors and astrocyte subtypes from pluripotent stem cells and characterized their functionality. This system has been experimentally utilized for cellular replacement therapy to promote learning and memory and to improve the maturity of neuronal subtypes. Furthermore, this powerful approach has become the high standard in research laboratories throughout the world to study various aspects of human disease. To understand how human astrocytes respond and signal to neurons in the context of neurodevelopmental disorders, Dr. Krencik conducted research as a postdoctoral fellow at the University of California-San Francisco under the mentorship of Dr. Erik Ullian and co-mentorship of Dr. David Rowitch. These studies led to several novel and important discoveries including the identification of a possible mechanism for astrocytes in controlling the timing of synaptic plasticity. More recently, he has been optimizing three dimensional in vitro cocultures of the human nervous system as an improved disease model and platform for neuroregeneration. His research goals and schemes have been summarized in numerous review articles and he enjoys interacting with the scientific community at conferences and through collaborative research projects. 

Description of Research

The Krencik lab is specifically focused on understanding the functional relationship of human neurons and astrocytes in normal and injured states. We employ novel three-dimensional human pluripotent stem cell-based culture techniques, optogenetic methods, electrophysiology, transplantations and molecular/biochemical approaches to answer vital questions and accelerate progress in neuroregeneration including cellular engraftment therapy and drug discovery. In addition, we work with the Neurosurgery Department and other institutions at the Texas Medical Center with the goal of translating innovative neuroscience research discoveries into clinical therapies for restoration of the nervous system after injury and disease.

Areas Of Expertise

Stem cells Neural stem cells Neuroscience Neuroregeneration Astrocytes Neuron-Glia interactions Physiology Disease modeling Translational medicine Spinal cord Spinal cord Injury

Humanized Biomimetic Nanovesicles for Neuron Targeting
Zinger, A, Cvetkovic, C, Sushnitha, M, Naoi, T, Baudo, G, Anderson, M, Shetty, A, Basu, N, Covello, J, Tasciotti, E, Amit, M, Xie, T, Taraballi, F & Krencik, RC 2021, , Advanced Science.

Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies
Aghlara-Fotovat, S, Nash, A, Kim, B, Krencik, RC & Veiseh, O 2021, , Drug Delivery and Translational Research.

Mapping astrocyte transcriptional signatures in response to neuroactive compounds
Sardar, D, Lozzi, B, Woo, J, Huang, TW, Cvetkovic, C, Creighton, CJ, Krencik, R & Deneen, B 2021, , International journal of molecular sciences, vol. 22, no. 8, 3975.

DNAzyme Cleavage of CAG Repeat RNA in Polyglutamine Diseases
Zhang, N, Bewick, B, Schultz, J, Tiwari, A, Krencik, RC, Zhang, A, Adachi, K, Xia, G, Yun, K, Sarkar, P & Ashizawa, T 2021, , Neurotherapeutics.

• Microfluidic Device for 3D Sensing and Manipulating Organoids
Krencik, RC & Banerjee, PP 2019, .

StarGlue: Human Astrocyte-Inspired Functional Biomaterial
Krencik, RC 2019, .

Biomimetic Targeting of Neural Cells With Nanoparticles
Cvetkovic, C, Zinger, A, Tasciotti, E & Krencik, RC 2019, .

Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes
Jones, JR, Kong, L, Hanna, MG, Hoffman, B, Krencik, R, Bradley, R, Hagemann, T, Choi, J, Doers, M, Dubovis, M, Sherafat, MA, Bhattacharyya, A, Kendziorski, C, Audhya, A, Messing, A & Zhang, SC 2018, , Cell Reports, vol. 25, no. 4, pp. 947-958.e4.

Synaptic microcircuit modeling with 3D cocultures of astrocytes and neurons from human pluripotent stem cells
Cvetkovic, C, Basu, N & Krencik, R 2018, , Journal of visualized experiments : JoVE, vol. 2018, no. 138, e58034.

Concepts toward directing human astroplasticity to promote neuroregeneration
Patel, R, Muir, M, Cvetkovic, C & Krencik, R 2018, , Developmental Dynamics, pp. 21-33.

Human stem cell-derived astrocytes replicate human prions in a PRNP genotype-dependent manner
Krejciova, Z, Alibhai, J, Zhao, C, Krencik, R, Rzechorzek, NM, Ullian, EM, Manson, J, Ironside, JW, Head, MW & Chandran, S 2017, , The Journal of experimental medicine, vol. 214, no. 12, pp. 3481-3495.

Systematic Three-Dimensional Coculture Rapidly Recapitulates Interactions between Human Neurons and Astrocytes
Krencik, R, Seo, K, van Asperen, JV, Basu, N, Cvetkovic, C, Barlas, S, Chen, R, Ludwig, C, Wang, C, Ward, ME, Gan, L, Horner, PJ, Rowitch, DH & Ullian, EM 2017, , Stem Cell Reports, vol. 9, no. 6, pp. 1745-1753.

Patient-derived iPSCs show premature neural differentiation and neuron type-specific phenotypes relevant to neurodevelopment
Yeh, E, Dao, DQ, Wu, ZY, Kandalam, SM, Camacho, FM, Tom, C, Zhang, W, Krencik, R, Rauen, KA, Ullian, EM & Weiss, LA 2018, , Molecular Psychiatry, vol. 23, no. 8, pp. 1687-1698.

Zika virus cell tropism in the developing human brain and inhibition by azithromycin
Retallack, H, Di Lullo, E, Arias, C, Knopp, KA, Laurie, MT, Sandoval-Espinosa, C, Mancia Leon, WR, Krencik, R, Ullian, EM, Spatazza, J, Pollen, AA, Mandel-Brehm, C, Nowakowski, TJ, Kriegstein, AR & DeRisi, JL 2016, , Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 50, pp. 14408-14413.

Human astrocytes are distinct contributors to the complexity of synaptic function
Krencik, R, van Asperen, JV & Ullian, EM 2016, , Brain Research Bulletin.

Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells
Hu, Y, Qu, Z-Y, Cao, S-Y, Li, Q, Ma, L, Krencik, R, Xu, M & Liu, Y 2016, , Journal of Neuroscience Methods, vol. 266, pp. 42-9.

Targeting brain’s star-shaped cells may yield autism drugs
Krencik, R, , 2016, Web publication/site.

Efficient generation of region-specific forebrain neurons from human pluripotent stem cells under highly defined condition
Yuan, F, Fang, K-H, Cao, S-Y, Qu, Z-Y, Li, Q, Krencik, R, Xu, M, Bhattacharyya, A, Su, Y-W, Zhu, D-Y & Liu, Y 2015, , Scientific Reports, vol. 5, pp. 18550.

Dysregulation of astrocyte extracellular signaling in Costello syndrome
Krencik, R, Hokanson, KC, Narayan, AR, Dvornik, J, Rooney, GE, Rauen, KA, Weiss, LA, Rowitch, DH & Ullian, EM 2015, , Science translational medicine, vol. 7, no. 286, pp. 286ra66.

Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits
Liu, Y, Weick, JP, Liu, H, Krencik, R, Zhang, X, Ma, L, Zhou, G, Ayala, M & Zhang, S-C 2013, , Nature Biotechnology, vol. 31, no. 5, pp. 440-7.