Gavin W. Britz, MBBCh, MPH, MBA, FAANS

Candy and Tom Knudson Centennial Chair in Neurosurgery, Department of Neurosurgery
Professor of Neurosurgery, Institute for Academic Medicine
Full Member, Research Institute
Co-director, Center for Neuroregeneration
Director, Neurological Institute
Houston Methodist
Weill Cornell Medical College

Britz Lab - Cerebrovascular Research



Dr. Gavin Britz earned his MBBCh at the University of the Witwatersrand School of Medicine, South Africa in 1987.  He completed a surgical internship in general surgery and fellowship in general surgery at Johns Hopkins Hospital, Baltimore in 1993 and in 2002 he completed his residency in neurosurgery.  During his residency he attended St. George’s Medical School, The University of London, UK and served as a Neurosurgical Registrar and Senior Registrar.  After residency, he took a cerebrovascular fellowship in 2002 and an Interventional Neuroradiology Fellowship in 2003 at the University of Washington Medical School, Seattle.  In 2003 he earned his MPH at the University of Washington, Seattle. He also obtained an MBA from George Washington University in 2015. He held faculty appointments at the University of Washington and Duke University before becoming a member of Houston Methodist Research Institute in 2014.

Description of Research

My basic science research focuses on understanding the cerebral microcirculation. This is largely in relation to the alteration of the microcirculation following an aneurysmal subarachnoid hemorrhage. Subarachnoid hemorrhage resulting from rupture of a brain aneurysm often demonstrates significant morbidity and mortality in spite of aneurysm obliteration to prevent re-hemorrhage. In humans, delayed vascular constriction can occur 5-7 days after SAH: proximal blood vessels lose reactivity and demonstrate narrowing unresponsive to smooth muscle relaxants, often leading to delayed cerebral ischemia. However, ischemic deficits can also arise from regions with minimal vasoconstriction on angiography or transcranial Doppler studies, and drugs preventing large vessel vasoconstriction may fail to improve clinical outcome. Microvascular dysfunction and acute brain injury from SAH are also important in the evolution of ischemia. Animal models of SAH can replicate features of human SAH, particularly partial vessel rupture and release of arterial blood, ischemic and cognitive changes but demonstrate a shorter time course of vasoconstriction (maximum at 2-3 days). Hippocampus has a less robust blood supply than neocortex, with resulting lower oxygen values in vivo, in addition to a predisposition to ischemia and cell loss. My laboratory has clearly demonstrated that both the pial and penetrating arterioles are affected and therefore may account for some of the morbidity despite successful treatment of the aneurysm.

My clinical research includes evaluating new and novel tools to treat a wide variety of problems such as brain aneurysms and skull base tumors.

Areas Of Expertise

Brain Tumors Aneurysms Acoustic Neuroma AVM arteriovenous malformation Moyamoya Meningioma Carotid Endarterectomy Neuro-Vascular Surgery Pituitary Surgery Skull Based Surgery Trigeminal Neuralgia
Education & Training

MBA, George Washington University
Clinical Fellowship, Johns Hopkins University and Hospital
Clinical Fellowship, University of Washington
MPH, University of Washington
Residency, University of Washington
Internship, University of the Witwatersrand
MBBCh, University of the Witwatersrand

Endovascular Robotics: The Future of Cerebrovascular Surgery
Panesar, SS & Britz, GW 2019, World neurosurgery, vol. 129, pp. 327-329.

Maxillary Artery to Intracranial Bypass
Zaki Ghali, MG, Srinivasan, VM & Britz, GW 2019, World neurosurgery, vol. 128, pp. 532-540.

Commentary: The Experience With Flow Diverters in the Treatment of Posterior Inferior Cerebellar Artery Aneurysms
Britz, GW & Desai, VR 2019, Operative neurosurgery (Hagerstown, Md.), vol. 17, no. 1.

Contemporary Management of Increased Intraoperative Intracranial Pressure: Evidence-Based Anesthetic and Surgical Review
Desai, VR, Sadrameli, SS, Hoppe, S, Lee, JJ, Jenson, A, Steele, WJ, Nguyen, H, McDonagh, DL & Britz, GW 2019, World neurosurgery, vol. 129, pp. 120-129.

Intraarterial Thrombolysis as Rescue Therapy for Large Vessel Occlusions
Zaidi, SF, Castonguay, AC, Jumaa, MA, Malisch, TW, Linfante, I, Marden, FA, Abraham, MG, Chebl, AB, Novakovic, R, Taqi, MA, Nogueira, RG, Martin, CO, Holloway, WE, Mueller-Kronast, N, English, JD, Dabus, G, Bozorgchami, H, Xavier, A, Rai, AT, Froehler, MT, Badruddin, A, Nguyen, TN, Yoo, AJ, Shaltoni, H, Janardhan, V, Chen, PR, Britz, GW, Kaushal, R, Nanda, A, Gupta, R & Zaidat, OO 2019, Stroke, vol. 50, no. 4, pp. 1003-1006.

Intracranial Venous Hypertension in Craniosynostosis: Mechanistic Underpinnings and Therapeutic Implications
Ghali, GZ, Zaki Ghali, MG, Ghali, EZ, Srinivasan, VM, Wagner, KM, Rothermel, A, Taylor, J, Johnson, J, Kan, P, Lam, S & Britz, GW 2019, World neurosurgery.

Britz, GW 2019, Clinical neurosurgery, vol. 84, no. 1, pp. 82-83.

Curative Embolization of Arteriovenous Malformations
Zaki Ghali, MG, Kan, P & Britz, GW 2019, World neurosurgery.

Fibrinogen chains intrinsic to the brain
Golanov, EV, Sharpe, MA, Regnier-Golanov, AS, Del Zoppo, GJ, Baskin, DS & Britz, GW 2019, Frontiers in Neuroscience, vol. 13, no. MAY, 541.

Britz, GW 2018, Clinical neurosurgery, vol. 83, no. 6.

Britz, GW 2018, Operative Neurosurgery, vol. 15, no. 1.

Unique percutaneous direct puncture technique for occlusion of a hypoglossal canal dural arteriovenous fistula
Diaz, OM, Toledo, MM, Roehm, JOF, Klucznik, RP, Chinnadurai, P, Lopez, GV & Britz, GW 2018, Journal of NeuroInterventional Surgery.

Creutzfeldt astrocytes may be seen in IDH-wildtype glioblastoma and retain expression of DNA repair and chromatin binding proteins
Ballester, LY, Boghani, Z, Baskin, DS, Britz, GW, Olsen, R, Fuller, GN, Powell, SZ & Cykowski, MD 2018, Brain Pathology, vol. 28, no. 6, pp. 1012-1019.

Britz, GW 2018, Clinical Neurosurgery, vol. 82, no. 3.

First Pass Effect: A New Measure for Stroke Thrombectomy Devices
Zaidat, OO, Castonguay, AC, Linfante, I, Gupta, R, Martin, CO, Holloway, WE, Mueller-Kronast, N, English, JD, Dabus, G, Malisch, TW, Marden, FA, Bozorgchami, H, Xavier, A, Rai, AT, Froehler, MT, Badruddin, A, Nguyen, TN, Taqi, MA, Abraham, MG, Yoo, AJ, Janardhan, V, Shaltoni, H, Novakovic, R, Abou-Chebl, A, Chen, PR, Britz, GW, Sun, CHJ, Bansal, V, Kaushal, R, Nanda, A & Nogueira, RG 2018, Stroke, vol. 49, no. 3, pp. 660-666.

Recurrent Cerebral Hemorrhage in Normal Pregnancy Secondary to Mycotic Pseudoaneurysms Related to Choriocarcinoma
Yeo, CJJ, Britz, GW, Powell, SZ, Smith, RG & Zhang, YJ 2018, World Neurosurgery, vol. 109, pp. 247-250.

Ceftazidime/avibactam use for carbapenem-resistant Klebsiella pneumoniae meningitis: A case report
Holyk, A, Belden, V, Lee, JJ, Musick, W, Keul, R, Britz, GW & Lin, J 2018, Journal of Antimicrobial Chemotherapy, vol. 73, no. 1, dkx358, pp. 254-256.

A Comparison of Cerebellar Retraction Pressures in Posterior Fossa Surgery: Extended Retrosigmoid Versus Traditional Retrosigmoid Approach
Liebelt, BD, Huang, M & Britz, GW 2018, World Neurosurgery.

Augmented Reality with Virtual Cerebral Aneurysms: A Feasibility Study
Karmonik, C, Elias, SN, Zhang, JY, Diaz, O, Klucznik, RP, Grossman, RG & Britz, GW 2018, World Neurosurgery.

Post-SAH hippocampal transcriptome
Golanov, EV, Regnier-Golanov, A & Britz, GW 2018, Journal of Cerebral Blood Flow and Metabolism.

Live Chat Available