By using interdisciplinary methods to combine nanoengineering, mathematical modeling and biomedical sciences, we develop nanotechnology-enabled therapeutic and diagnostic platforms to combat diseases including cancer, diabetes, cardiovascular and infectious diseases. Our main strategies are to make it possible for clinicians to detect disease early from blood proteomic signatures through the use of nanochips, to produce injectable nanovectors for targeted therapies and to design and create intelligent implants that allow controlled, time-released doses of substances. We have also created nanoscale scaffolding to aid in bone tissue engineering.
12
Faculty with Academic Appointments
39
Peer Reviewed Publications in 2024