BioMedStat

Version 1.0

User Guide

© 2004-2005 Peterson Software Lab

Baylor College of Medicine

Table of Contents

INPUT FILE FORMAT

Tab-delimited Text Files with Variable Names

Tab-delimited Text Files with Variable and Record Names

EXAMPLE 1 - OPENING A TAB-DELIMITED TEXT FILE

EXAMPLE 2 – SUMMARY STATISTICS OF SEVERAL VARIABLES

EXAMPLE 3 – RECODE A CONTINUOUS VARIABLE INTO QUARTILES, AND THEN RECODE INTO 4 NEW INDICATOR VARIABLES

EXAMPLE 4 – PARAMETRIC 2-SAMPLE PAIRED T-TEST

EXAMPLE 5 – NON-PARAMETRIC 2-SAMPLE PAIRED WILCOXON SIGNED RANK TEST

EXAMPLE 6 – PARAMETRIC INDEPENDENT 2-SAMPLE T-TEST

EXAMPLE 7 - NON-PARAMETRIC INDEPENDENT 2-SAMPLE MANN-WHITNEY U TEST

EXAMPLE 8 – PARAMETRIC INDEPENDENT K-SAMPLE ANALYSIS OF VARIANCE

EXAMPLE 9 – NON-PARAMETRIC INDEPENDENT K-SAMPLE KRUSKAL-WALLIS TEST

EXAMPLE 10 – PEARSON PRODUCT MOMENT AND SPEARMAN RANK CORRELATION

EXAMPLE 11 – COVARIANCE ANALYSIS

EXAMPLE 12 – CHI-SQUARE 2-WAY CONTINGENCY TABLE ANALYSIS

EXAMPLE 13 – LINEAR REGRESSION

EXAMPLE 13 – LOGISTIC REGRESSION (UNCONDITIONAL)

Input File Format

Tab-delimited Text Files with Variable Names

Tab-delimited text files are comprised of data separated (i.e., delimited) with a character tab. Tabdelimited text files used for data analysis typically have variable names in the first row of the file. The simplest way to generate a tab-delimited text file is by specifying "tab-delimited text" as a file save option in Microsoft Excel. The example below shows the setup necessary for saving data and variables names to a tab-delimited text file in Excel.

	A	В	С	D	E	F	G
1	ID	gender	age	smoke	protein A	protein B	
2	1	0	55	0	0.56	1.48	
3	2	0	62	0	1.10	0.22	
4	3	0	58	0	0.97	1.08	
5	4	0	64	1	0.90	0.41	
6	5	0	47	0	0.30	0.72	
7	6	1	59	1	1.01	3.35	
8	7	1	38	0	4.50	2.48	
9	8	1	75	0	2.29	1.57	
10	9	1	56	1	0.82	6.78	
11	10	1	40	1	0.26	1.61	
12							
13							

To save the data listed above, select File, then Save As, then select Tab delimited (txt), as in:

Microsoft Excel - protein_data										
:	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew j	[ns	ert F	<u>o</u> rmat	Ιo			
		Save <u>A</u>	<u>i</u> s	5		b (-			
:	_	*			3 8)	j 🖳			
	H20		-		fx -					
	L A	1	В		C	:				
1	ID		gender		age		smo			
2		1		0		- 55				
3		2		0		62				
4		3		0		-58				

Next, in the Save As window, specify the file name as "protein_data":

My Compute	ər			
My Networ	File <u>n</u> ame:	protein_data	~	Save
	Save as <u>t</u> ype:	Text (Tab delimited)	~	Cancel

You will notice two popup windows, the first of which states that multiple sheets cannot be saved in the file, so click OK:

Microsof	ít Excel
<u>.</u>	 The selected file type does not support workbooks that contain multiple sheets. To save only the active sheet, click OK. To save all sheets, save them individually using a different file name for each, or choose a file type that supports multiple sheets.

And the second which states that you can lose special features of Excel when saving data into a tabdelimited text file. For example, bold fonts and colors cannot be saved with the data, thus, click Yes:

Microsof	ft Excel
٩	protein_data.txt may contain features that are not compatible with Text (Tab delimited). Do you want to keep the workbook in this format? • To keep this format, which leaves out any incompatible features, click Yes. • To preserve the features, click No. Then save a copy in the latest Excel format. • To see what might be lost, click Help.
	Yes No Help

Next, open the "protein_data.txt" file just saved, and the following will appear:

D p	rotei	n_data	- Notep	ad							
File	Edit	Format	View H	lelp							
年 1 2 3 4 5 6 7 8 9 10		gende 0 0 1 1 1 1		e	smoke 0 1 0 1 0 1 1	protein 0.56 1.10 0.97 0.90 0.30 1.01 4.50 2.29 0.82 0.26	A 1.48 0.22 1.08 0.41 0.72 3.35 2.48 1.57 6.78 1.61	pro	tein B		
											\sim
<											>

Tab-delimited Text Files with Variable and Record Names

The following illustrates a file setup with both variable and record names. For this example, the variable names are the sample (patient) identifiers and the record names in the last column are the genes or proteins. This setup is commonly used for DNA microarray data, however, BioMedStat was designed for clinical statistical analysis for clinical data in which records represent patients and columns represent variables or measurements made on the experimental units (patients). (If you want to analyze microarray data, then use the <u>ChipST2C</u> program). The example is shown below:

	A	В	C	D	E	F	G	Н		J	K
1	samp1	samp2	samp3	samp4	samp5	samp6	Gene				
2	1.95	6.34	0.08	0.49	1.14	0.41	calmodulin 2 (phospho				
3	0.79	0.33	1.12	3.11	0.78	2.22	Human 90-kDa heat-s	hock protei	n gene; cDl	NA; comple	ete ods_34
4	1.89	0.85	0.51	0.47	1.12	1.15	phosphofructokinase;	liver_36950			
5	3.30	0.44	1.57	2.52	0.83	0.27	glutamate dehydrogen	ase 1_3928	35		
6	0.77	0.60	0.65	1.19	0.74	0.29	3-hydroxymethyl-3-me	thylglutaryl	-Coenzyme	e A lyase (h	iydroxyme
7	0.32	0.36	0.24	0.54	0.23	0.60	accessory proteins BA	AP31/BAP2	9_37196		
8	2.77	0.44	0.55	2.81	0.32	7.07	glycogen synthase kir	nase 3 beta	_37904		
9	0.82	3.35	0.25	1.14	0.58	1.50	Human cyclin G1 intei	racting prot	ein (1500G)	X1) mRNA;	complete
10	0.61	2.14	3.02	1.44	0.12	2.97	methionine aminopept	idase; elF-2	2-associate	d p67_3909	93
11	3.29	0.41	3.21	5.17	0.32	0.91	superoxide dismutase	1; soluble	(amyotroph	ic lateral so	clerosis 1
12 13											
13											

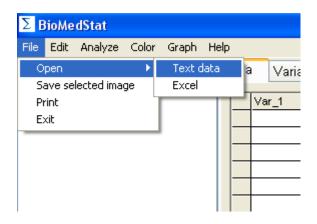
To continue, after the data above were saved as a tab-delimited text file and opened, the following format will be observed:

0.79 0.33 1.12 3.11 0.78 2.22 Human 90-kDa heat-shock 1.89 0.85 0.51 0.47 1.12 1.15 phosphofructokinase; li 3.30 0.44 1.57 2.52 0.83 0.27 glutamate dehydrogenase 0.77 0.60 0.65 1.19 0.74 0.29 3-hydroxymethyl-3-methy 0.32 0.36 0.24 0.54 0.23 0.60 accessory proteins BAP3 2.77 0.44 0.55 2.81 0.32 7.07 glycogen synthase kinas 0.82 3.35 0.25 1.14 0.58 1.50 Human cyclin G1 interac 0.61 2.14 3.02 1.44 0.12 2.97 methionine aminopeptida	📕 prote	in_sample	e_data - No	tepad			
1.95 6.34 0.08 0.49 1.14 0.41 calmodulin 2 (phosphory 0.79 0.33 1.12 3.11 0.78 2.22 Human 90-kDa heat-shock 1.89 0.85 0.51 0.47 1.12 1.15 phosphofructokinase; li 3.30 0.44 1.57 2.52 0.83 0.27 glutamate dehydrogenase 0.77 0.60 0.65 1.19 0.74 0.29 3-hydroxymethyl-3-methy 0.32 0.36 0.24 0.54 0.23 0.60 accessory proteins BAP3 2.77 0.44 0.55 2.81 0.32 7.07 glycogen synthase kinas 0.82 3.35 0.25 1.14 0.58 1.50 Human cyclin G1 interac 0.61 2.14 3.02 1.44 0.12 2.97 methionine aminopeptida	File Edit	Format \	'iew Help				
	1.95 0.79 1.89 3.30 0.77 0.32 2.77 0.82 0.61	6.34 0.33 0.85 0.44 0.60 0.36 0.44 3.35 2.14	0.08 1.12 0.51 1.57 0.65 0.24 0.55 0.25 3.02	0.49 3.11 0.47 2.52 1.19 0.54 2.81 1.14 1.44	1.14 0.78 1.12 0.83 0.74 0.23 0.32 0.58 0.12	0.41 2.22 1.15 0.27 0.29 0.60 7.07 1.50 2.97	Gene calmodulin 2 (phosphory Human 90-kDa heat-shock phosphofructokinase; li glutamate dehydrogenase 3-hydroxymethyl-3-methy accessory proteins BAP3 glycogen synthase kinas Human cyclin G1 interac methionine aminopeptida superoxide dismutase 1;
	2						×

Example 1 - Opening a Tab-Delimited Text File

When BioMedStat is installed, the icon \sum is placed on the Desktop with a shortcut link to the BioMedStat program. The desktop shortcut appearance is as follows:

(Note that in some cases, BioMedStat may be installed without a desktop shortcut requiring program startup by on the Start, then Programs, then BioMedStat.)


To start BioMedStat, double-click on the desktop icon. You will then see a splash screen:

∑ BioMedStat StartUp
Next-generation software based on the Miscrosoft .NET Framework
BioMedStat Version 1.0
©2004-5 Peterson Lab, Baylor College of Medicine Licensed to: Leif Peterson 1024 x 768 Pixel screen resolution (1024 x 768 required)

Next click on the Start button, and the BioMedStat application will then be visible, as shown below:

Edit Analyze Color Graph										
	Data Va	riables Resu	ilts Images	Log						
	Var_1	Var_2	Var_3	Var_4	Var_5	Var_6	Var_7	Var_8	Var_9	Var_10
			j.						0	
	_		1					-		_
			-						_	
				-						-
			-						i i i	-
		0	0		5	0	19		10 mm	-
			1				<u> </u>		0	
			1				1)	_
						-				
					2				2	
			2	-	3		8	6	9	-
		-				-				-
									1	-
]							
	- <u>-</u>		2	-	2			3	2	
			-		8			0		-
				-	-		-		-	-
			-				-		-	-
							-		-	
					-					_

To open a file, select File, Open, Text data, as shown below

and the Input format popup window will appear:

Σ Input Format	
Text format Tab-delimited Comma delimited Space delimited ✓ Variable names in first row Record names in last column 	ок

Since tab-delimited is the default text file format it won't need to be specified, however, check the "Variable names in first row" option and click OK. In the Open popup window, you should see the text files that were installed in the c:\Program Files\BioMedStat\BioMedStat\directory, as shown below:

Open						? 🗙
Look in:	🚞 BioMedStat		G	1	-	
Recent Desktop My Documents		283_wilcoxin e_3.5_differential e_3.5_sum_to_zero how_low_birth_weight _CaL abetes 2_Friedman				
My Computer						
	File name:	Hosmer&Lemeshow_low_birth	_weight	*		Open
My Network	Files of type:	Tab-delimited text (*.txt)		*		Cancel

Select the Hosmer & Lemeshow low birth weight file, and then click on Open (or double-click the filename). When the file is read into BioMedStat, the status text filed and progressbar on the log tab will indicate the amount of data read and copied into the data viewing spreadsheet. When completed, the data viewing tab will show the data that were read in. (Note: the spreadsheet in the Data tab is only used for viewing data and not editing, i.e., changing, copying, pasting, etc.)

Ed	lit Ar	nalvze	Color	Graph	Help																
		101/20	20101	didpit	Da	ta	Variables	Results	Imag	es Lo	q										
						li	id	low	age		lwt	race	1	smoke	q	ti ht	lui	(ftv	bwt	-
					-	1	85	-	0	19			2		0	0	0	1		0	2523
						2	86		0	33	15	5	3		0	0	0	0		3	2551
						3	87		0	20	10	5	1		1	0	0	0)	1	2557
						4	88		0	21	10	8	1		1	0	0	1		2	2594
						5	89		0	18	10	7	1		1	0	0	1		0	2600
						6	91	2	0	21			3	5	0	0	0	0)	0	2622
						7	92		0	22		8	1		0	0	0	C)	1	2637
						8	93		0	17			3		0	0	0	C		1	2637
						9	94		0	29			1		1	0	0	0		1	2663
					_	10	95		0	26			1		1	0	0	0		0	2665
					-	11	96		0	19			3		0	0	0	0		0	2722
					-	12	97		0	19	1.00		3		0	0	0	C		1	2733
					<u> </u>	13	98		0	22			3		0	0	1	C		0	2750
						14	99	2	0	30		24	3	8	0	1	0	1		2	2750
					_	15	100		0	18			1		1	0	0	C		0	2769
					_	16	101		0	18			1		1	0	0	0		0	2769
					-	17	102		0	15			2		0	0	0	0		0	2778
					- 1	18	103		0	25			1		1	0	0	C		3	2782
					-	19	104	-	0	20			3	×	0	0	0	1		0	2807
					_	20 21	105		0	28 32			1		1	0	0			2	2821 2835
					_	21	106		0	32			1		0	0	0	1		3	2835
					-	22	107	2	0	36			1	0	0	0	0			1	2836
					-	24	100	2	0	28			3	2	0	0	0	0		0	2863
						25	111	v	0	25			3	9	0	0	0	1	-	2	2877
						26	112		0	28	1502		1		0	0	0			0	2877
					- 1	27	113		0	17			1		1	0	0			0	2906
					-	28	114		0	29			1		0	0	0	0		2	2920
					-	29	115		0	26			2		1	0	0	0		0	2920
						30	116		0	17		_	2		0	0	0			1	2920
					-	31	117		0	17			2		0	0	0	0		1	2920
						32	118	2	0	24			1	2	1	1	0			1	2948
					-	33	119		0	35			2		1	1	0	0	-	1	2948
						34	120		0	25			1		0	0	0	0		1	2977
					-	35	121		0	25	12	5	2		0	0	0	0		0	2977
					-	36	123		0	29	14	0	1		1	0	0	0		2	2977
					-	37	124		0	19	13	8	1		1	0	0	0		2	2977

Example 2 – Summary statistics of several variables

_

Data used for this example were published in the book Hosmer, D.W. and Lemeshow, S. *Applied Logistic Regression*, New York, Wiley (1989) and are available form the University of Massachussetts (Amherst) Statistical Software Information Internet resources at URL http://people.umass.edu/statdata/statdata/. These data are copyrighted by John Wiley & Sons Inc. and must be acknowledged and used accordingly. Data were collected at Baystate Medical Center, Springfield, Massachusetts during 1986.

The data set is comprised of 189 observations for 11 variables (risk factors) associated with giving birth to a low birth weight baby (weighing less than 2500 grams). Data were collected on 189 women, 59 of which had low birth weight babies and 130 of which had normal birth weight babies. Four variables which were thought to be of importance were age, weight of the subject at her last menstrual period, race, and the number of physician visits during the first trimester of pregnancy.

Columns	Variable	Abbreviation
2-4	Identification Code	ID
10	Low Birth Weight (0 = Birth Weight >= 2500g, 1 = Birth Weight < 2500g)	LOW
17-18	Age of the Mother in Years	AGE
23-25	Weight in Pounds at the Last Menstrual Period	LWT

32	Race (1 = White, 2 = Black, 3 = Other)	RACE
40	Smoking Status During Pregnancy $(1 = Yes, 0 = No)$	SMOKE
48	History of Premature Labor (0 = None 1 = One, etc.)	PTL
55	History of Hypertension $(1 = Yes, 0 = No)$	HT
61	Presence of Uterine Irritability (1 = Yes, 0 = No)	UI
67	Number of Physician Visits During the First Trimester (0 = None, 1 = One, 2 = Two, etc.)	FTV
73-76	Birth Weight in Grams	BWT

Background information for the data:

- Low birth weight is an outcome that has been of concern to physicians for years.
- Infant mortality rates and birth defect rates are very high for low birth weight babies
- A woman's behavior during pregnancy (including diet, smoking habits, and receiving prenatal care) can greatly alter the chances of carrying the baby to term and, consequently, of delivering a baby of normal birth weight

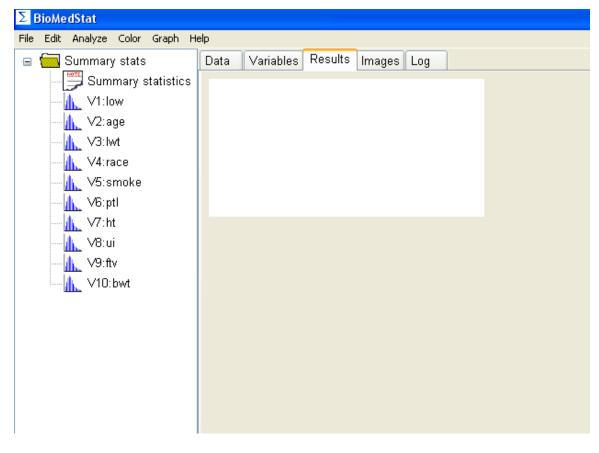
The risk factors described above have been shown to be associated with low birth weight in the obstetrical literature. The goal of the Hosmer & Lemeshow study was to ascertain if these variables were important in the population being served by the medical center where the data were collected.

Open the tab-delimited text file for the Hosmer & Lemeshow low birth weight data (see Example 1). Select the Summary statistics command of the Analyze pull-down menu, shown as

Σ BioMe	dStat	
File Edit	Analyze Color Graph Help	
File Edit	Analyze Color Graph Help Summary statistics Correlation analysis Covariance analysis Covariance analysis 2-Sample tests • k-Sample tests • Regression analysis • Categorical analysis • Cluster analysis • Survival analysis • Simulation • Cellular Automata • Word Frequency • cDNA to AA translation •	Variak id 1 2 3 4 5 5 5 5 5 5 5 7 8 9 0 1
		12 13 14

Notice that the Variables tab opens, shown as follows:

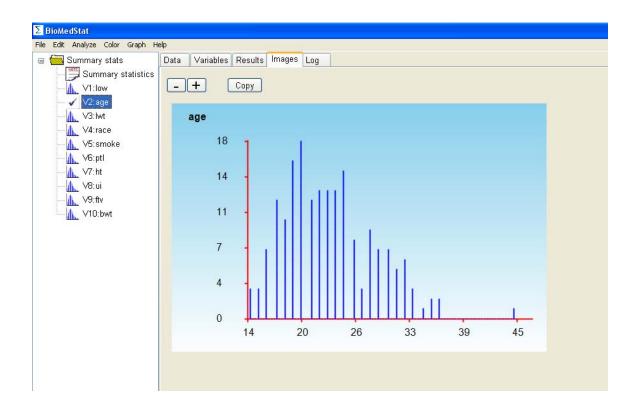
∑ BioMedStat			
File Edit Analyze Color Graph			
Summary stats	Data Variables Results Images L id Iow age Mt races smoke pti ht ui th ti ti th bwt ftv bwt bwt Expand into dichotomous Indicator variable Recode into quartiles Standardize Log_re Log_10 Log_2 Log_2 Log_10 Log_2	eg	Run Missing code: _9999 Charts X-min data X-max data Y-min data Y-min data Y-mix data First color Second Chart sxis color Chart solor Chart solor Second Chart solor


Select all but the first variable (ID number) in the following manner:

aph I	Help	
	Data Variables Results Images Log	g
	id low age lwt race smoke ptl ht ui ftv bwt	S Continuous variables

Then click on the button to add the variables to the list of selected variables:

aph Help		
Data Variables Results Images Lo id low age lwt race smoke ptl ht ui ftv bwt	g Continuous variables bwt ftv ui ht ptl smoke race lwt age low	Run Missing code: <u>-999</u> : Charts
		Fir
		Chart lin


and finally, click on the Run button. The Treeview on the left will show a number of icons in the form:

2704	
To view the summary statistics for each variable, click on the $ec{P}$ icon, and the text of	output containing
summary statistics for the specified variables will become visible:	

File Edit Analyze Color Graph		_										
🖃 🚾 Summary stats	Data Varia	bles	Results In	nages Lo	g							
— 🖌 Summary statisti	cs											
<mark>/</mark> ▲_ ∨1:low						Su	mmary Sta	tistics				
<u> </u> V2:age <u> </u> V3:lwt	Variable	N	Average	Std. Dev.	Min	Max	Range	Median	Q1	Q2	Q3	Sk
<u>A.</u> V4:race <u>A.</u> V5:smoke	low	189	0.312	0.465	0.000	1.000	1.000	0.000	0.000	0.000	1.000	0.8
V6:ptl	age	189	23.238	5.299	14.000	45.000	31.000	22.000	19.000	22.000	26.000	0.7
<mark>//</mark> ∨7:ht	lwt	189	129.815	30.579	80.000	250.000	170.000	121.000	110.000	121.000	140.000	1.3
<mark> }</mark> ∨8:ui	race	189	1.847	0.918	1.000	3.000	2.000	1.000	1.000	1.000	3.000	0.3
<u> </u> V9:ftv V10:bwt	smoke	189	0.392	0.489	0.000	1.000	1.000	0.000	0.000	0.000	1.000	0.4
└── <mark>//</mark> \/10:bwt	ptl	189	0.196	0.493	0.000	3.000	3.000	0.000	0.000	0.000	0.000	2.7
	ht	189	0.063	0.244	0.000	1.000	1.000	0.000	0.000	0.000	0.000	3.5
	ui	189	0.148	0.356	0.000	1.000	1.000	0.000	0.000	0.000	0.000	1.9
	ftv	189	0.794	1.059	0.000	6.000	6.000	0.000	0.000	0.000	1.000	1.5

To observe the frequency histogram of age, click on the *icon* and the following histogram will appear:

Example 3 – Recode a continuous variable into quartiles, and then recode into 4 new indicator variables

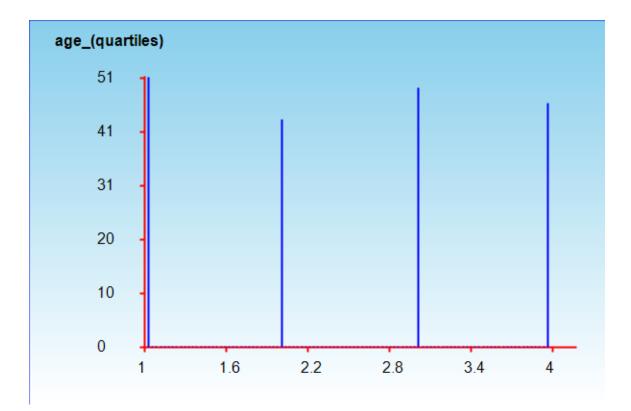
Open the Hosmer & Lemeshow low birth weight data (see Example 1), select the Variables tab and then select (highlight) the "age" variable as:

Graph He	elp				
	Data	Variables	Results	Images	Log
tatistics	id low lwt race smok ptl ht ui ftv bwt	e			

Next, at the bottom of the Variables tab are several buttons for transforming the values of variables into new values:

Transform selected variable
Expand into dichotomous Indicator variables
Recode into quartiles
Standardize
Logarithm Exponentiate
⊙Log_e OLog_10 OLog_2

Now that the "age" variable is selected in the variable list, click on the button, and a new (ordinally ranked) categorical variable called "age_(quartiles)" will be generated and shown in the variable list. At run-time, the cutpoints for quartiles are computed (to see their values, run the summary statistics option on the age variable) and the resulting values for the new variable are 1, 2, 3, 4, representing the age quartile that each record (patients) is assigned to. Select the new variable ("age_(quartiles)") in the fashion


Data	Variables	Results	Images	Log
id low age lwt race smok ptl ht ui ftv bwt age (e quartiles)			

Expand into dichotomous

and then click on the indicator variables button. Upon completion of the transformation, there will be four new *indicator* or "dummy" variables added to the list, appearing as:

C)ata	Variables	Results	Images	Log
	age_(age_(age_(e quartiles) quartiles)_(1 quartiles)_(2 quartiles)_(3 quartiles)_(4	2) 3)		

The four indicator variables have values of 0 or 1 depending on whether or not a patient's age falls within the given quartile represented by the variable. If you run summary statistics on the age_(quartiles) variable, the following histogram will be generated:

which clearly shows that the variable takes on values of 1, 2, 3, or 4 at various frequencies of occurrence.

Example 4 – Parametric 2-sample paired T-test

Let us consider the example listed on page 77 of Siegel (Siegel, S., *Non-parametric Statistics for the Behavioral Sciences*, New York, McGraw-Hill, 1956) involving matched data on social perceptiveness scores from identical twin pairs. The hypothesized experiment for this example tests whether or not there is a difference between social perceptiveness scores between twins after one of the twins attends a single term of nursery school and the other stays home. The data are listed below:

Identical twin pair	Social perceptiveness score of twin in nursery school	Social perceptiveness score of twin at home
а	82	63
b	69	42
С	73	74
d	43	37
е	58	51
f	56	43
g	76	80
h	65	82

Let's use a "paired T-test" to determine if the average social perceptiveness scores are the same between the twin pairs. Start BioMedStat, and first specify the Open command of the File pull-down menu, then Text, and then specify variable names in first row as shown below:

Σ Input Format	
Text format Tab-delimited Comma delimited Space delimited Yariable names in first row Record names in last column 	ок

Next, select the file Siegel_table_5_6.txt, shown as:

Open		? 🗙
Look in:	📄 BioMedStat 💽 🕝 🤌 🔛 🕶	
D Recent	OUTPUT Conover_kruskal_wallis_p231.txt Conover_page_283_wilcoxin.txt Forthofer_Table_3.5_differential.txt	
Desktop	 Forthofer_Table_3.5_sum_to_zero.txt Hosmer&Lemeshow_low_birth_weight.txt Kalb&Prenctice_CaL.txt pima-indians-diabetes.txt 	
My Documents	 Plasma_retinol.txt Siegel_table7_2_Friedman.txt Siegel_table_5_6.txt 	
My Computer		
	File name: Siegel_table_5_6.txt	Open
My Network	Files of type: Tab-delimited text (*.txt)	Cancel

and you will see the data in the viewing spreadsheet as follows:

File Edit Analyze Color Graph Help Data Variables Results Image: Color Image: Color	
nursery home 1 82 63 2 69 42 3 73 74 4 43 37 5 58 51 6 56 43 7 76 80	
nursery home 1 82 63 2 69 42 3 73 74 4 43 37 5 58 51 6 56 43 7 76 80	iges Log
2 69 42 3 73 74 4 43 37 5 58 51 6 56 43 7 76 80	
3 73 74 4 43 37 5 58 51 6 56 43 7 76 80	
4 43 37 5 58 51 6 56 43 7 76 80	
5 58 51 6 56 43 7 76 80	
6 56 43 7 76 80	
7 76 80	
8 65 82	

To begin the analysis, select the "T-tests (paired samples)" command of the 2-sample command of the Analyze pull-down menu as follows:

Σ	BioMe	dStat				
File	Edit	Analyze Color Grap	h Help			
		Summary statistics		Variabl	es Results	Images Log
		Correlation analysis Covariance analysis		ursery	home	
		2-Sample tests	Þ	T-tests (P	aired samples ·	uses 2 variables)
		k-Sample tests	•	T-Tests (I	ndependent sa	amples uses grouping variable)
		Regression analysis	+	Wilcoxin s	igned ranks te:	st (Paired samples uses 2 variables)
		Categorical analysis	+	Mann-Wh	itney (Indepen	ident samples uses grouping variable)
		Cluster analysis		58	51	
		Principal component	analysis	56	43	
		Survival analysis	•	76	80	
		Simulation	•	65	82	
		Cellular Automata				
		Word Frequency				
		cDNA to AA transla	ion			
				_		

Specify the nursery variable as Variable 1, and home variable as Variable 2 (shown below) and then click on Run.

ıph Help Data Variables Results Images Log	g	
nursery home	Variable 1 ● . nursery Variable 2 ● . home	Run Missing code: _9999

And the resulting icons and table (after clicking "nursery" icon) will appear as:

a 🧑 T-test	Data Variables F	Results Images Log		
		T-Te	st (Paired Samples)	
			nursery	home
		Sample Size (n_1, n_2):	8	8
		Average [avg(x), avg(y)]:	65.2500	59.0000
		Variance [var(x), var(y)]:	157.6429	329.1429
		Numerator: avg(d_i)	6.2500	
		s.d.(d_i)	13.8229	
		Denominator	4.8871	
		Test Statistic	1.2789	
		d.f.	7	
		P-value	0.2456	
		Mean permutation t	-0.02	
		Permutation p-value	0.2423	
		Iterations	9999	

The test statistic of 1.2789 for a two-tailed test is compared with a tabled critical value of $t_{0.05; 7}$ =2.365, so the decision rule is to accept the null hypothesis that there is no difference between the average social perceptiveness score among matched pairs of twins. The relevant mathematical formulae are given as:

T-Test (Paired Samples)						
	nursery	home				
Sample Size (n_1, n_2):	8	8				
Average [avg(x), avg(y)]:	65.2500	59.0000				
Variance [var(x), var(y)]:	157.6429	329.1429				
Numerator: avg(d_i)	6.2500	\overline{d}				
s.d.(d_i)	13.8229	$\sigma_{\overline{d}}$				
Denominator	4.8871	$\sigma_{\overline{d}}/\sqrt{n}=13.8229/\sqrt{8}$				

Test Statistic*	1.2789	$\frac{\overline{d}}{\sigma_{\overline{d}}/\sqrt{n}} = \frac{4.8871}{1.2789}$		
d.f.	7	$t_{0.05,7} = 2.365$		
P-value	0.2456			
Mean permutation t	-0.02			
Permutation p-value	0.2423			
Iterations	9999			
*Daniel, W.W. Paired Comparisons (Sect. 6.4). In: Biostatistics: A Foundation for Analysis in the Health Sciences (5 th Edition). New York, Wiley (1991).				

While the SPSS (12) benchmark results are as follows:

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	nursery	65.250	8	12.5556	4.4391
	home	59.000	8	18.1423	6.4143

Paired Samples Test

			Paire	ed Differences	5				
		Mean	Std. Deviation	Std. Error95% Confidence IntervalMeanof the Difference					
					Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	nursery - home	6.2500	13.8229	4.8871	-5.3062	17.8062	1.279	7	.242

Example 5 – Non-parametric 2-sample paired Wilcoxon signed rank test

This example will also use an aggressiveness score among 12 sets of identical twins, given on page 283 of *Conover, W.J. The Wilcoxon Signed Rank Test. In: Practical Non-Parametric Statistics (2nd Edition). New York, Wiley (1980).* Start BioMedStat, and first specify the Open command of the File pull-down menu, then Text, and then specify variable names in first row as shown below:

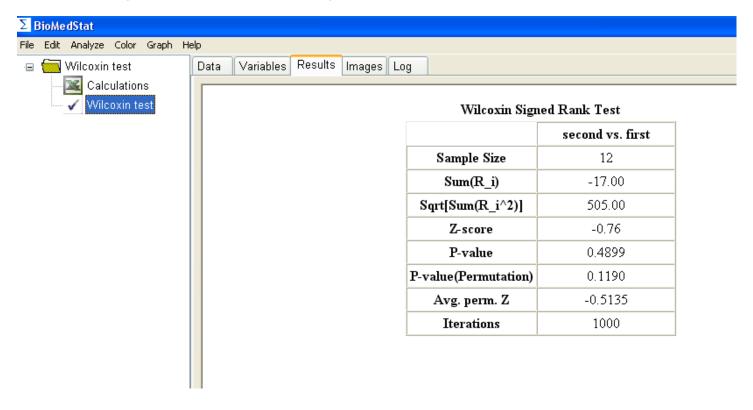
Σ Input Format	
Text format Tab-delimited Comma delimited Space delimited Space delimited Variable names in first row Record names in last column 	ОК

Next, select the file "conover_page_283_Wilcoxon.txt, shown as:

Open							? 🗙	
Look in:	🚞 BioMedStat		*	G	ø	• 📰 🏓		
Recent Desktop My Documents	 OUTPUT conover_kruskal_wallis_p231 conover_page_283_wilcoxin Forthofer_Table_3.5_differential Forthofer_Table_3.5_sum_to_zero Hosmer&Lemeshow_low_birth_weight Kalb&Prenctice_CaL pima-indians-diabetes Plasma_retinol Siegel_table7_2_Friedman Siegel_table_5_6 							
My Computer								
	File name:	conover_page_283_wilcoxin				~	Open	
My Network	Files of type:	Tab-delimited text (*.txt)				*	Cancel	

and you will see the data in the viewing spreadsheet as follows:

	<mark>dStat</mark> Analyze	Color	Graph	Help					
 				_	Data	Variable	es Results	Images	Log
									3
						second	first		
					1	88	86		
					2	77	71		
					3	76	77		
					4	64	68		
					5	96	91		
					6	72	72		
					7	65	77		
					8	90	91		
					9	65	70		
					10	80	71		
					11	81	88		
					12	72	87		


To begin the analysis, select the "Wilcoxon signed ranks test" command of the 2-sample command of the Analyze pull-down menu as follows:

Σ Bio	Me	dStat				
File E	dit	Analyze Color Graph Help				
		Summary statistics Correlation analysis Covariance analysis			rs Results	Images Log
		2-Sample tests	uses 2 variables)			
		k-Sample tests	۲.		•	amples uses grouping variable)
		Regression analysis	1		-	st (Paired samples uses 2 variables)
		Categorical analysis	۲I.	Mann-Whi	ney (Indepen:	ident samples uses grouping variable)
		Cluster analysis	٦	96	91	
		Principal component analysis		72	72	
		Survival analysis	۲I	65	77	
		Simulation	۶l	90	91	
		Cellular Automata		65	70	
		Word Frequency		80	71	
		cDNA to AA translation		81	88	
	I	<u>1:</u>	2	72	87	

Specify the second variable as Variable 1, and first variable as Variable 2 (shown below) and then click on Run.

Σ BioMedStat
File Edit Analyze Color Graph Help
Data Variables Results Images Log
Data Variables Results Images Log Second irist Variable 1 Run Variable 2 Missing code: 9999 •

And the resulting icons and table (after clicking "Wilcoxon" icon) will appear as:

The test statistic of -0.76 for a two-tailed test is compared with a tabled critical value of -1.96, so the decision rule is to accept the null hypothesis that the two distributions are alike. The relevant mathematical formulae are given as:

Wilcoxon Signe	d Rank Test						
	Second vs. first						
Sample Size	12	n					
Sum(R_i)	-17.00	$\sum_{i=1}^n R_i$					
Sqrt[Sum(R_i^2)]	505.00	$\sum_{i=1}^{n} R_i^2$					
Z-score*	-0.76	$\sum_{i=1}^{n} R_i \left/ \sqrt{\sum_{i=1}^{n} R_i^2} \right.$					
P-value	0.4899						
P-value(Permutation)	0.1190						
Avg. perm. Z	-0.5135						
Iterations	1000						
	*Conover, W.J. The Wilcoxon Signed Rank Test. In: Practical Non-Parametric Statistics (2 nd Edition). New York, Wiley (1980)						

The SPSS (12) benchmarked results for the Wilcoxon test are:

Ranks

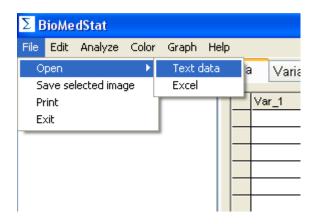
		Ν	Mean Rank	Sum of Ranks
first - second	Negative Ranks	4(a)	6.13	24.50
	Positive Ranks	7(b)	5.93	41.50
	Ties	1(c)		
	Total	12		

a first < second

b first > second

c first = second

Test Statistics(b)


	first - second
Z	756(a)
Asymp. Sig. (2-tailed)	.449

a Based on negative ranks.

b Wilcoxon Signed Ranks Test

Example 6 – Parametric independent 2-sample t-test

This example uses the Hosmer and Lemeshow low birth weight data described in detail in Example 2. To begin, select File, Open, Text data, as shown below:

and the Input format popup window will appear:

Σ Input Format	
Text format Image: Tab-delimited Comma delimited Space delimited Space delimited ✓ Variable names in first row Record names in last column	ОК

check the "Variable names in first row" option and click OK. Open the Hosmer and Lemeshow low birth weight data file as shown below:

Open						? 🛛			
Look in:	🚞 BioMedStat) 🦻	•111 🥙				
Recent Desktop My Documents	OUTPUT conover_kruskal_wallis_p231 conover_page_283_wilcoxin Forthofer_Table_3.5_differential Forthofer_Table_3.5_sum_to_zero Hosmer&Lemeshow_low_birth_weight Kalb&Prenctice_CaL pima-indians-diabetes Plasma_retinol Siegel_table7_2_Friedman Siegel_table_5_6								
My Computer									
	File name:	Hosmer&Lemeshow_low_birth	_weight		~	Open			
My Network	Files of type:	Files of type: Tab-delimited text (*.txt) 🔽 Cancel							

In the Analyze pull-down menu select 2-sample tests, then T-tests (independent samples) shown as:

ΣΒ	ioMe	dStat										
File	Edit	Analyze Color	Graph	Help								
		Summary statis Correlation and				Variables	Results I	mages Log	3			
		Covariance an	alysis			id	low	age	lwt	race	sn	
		2-Sample tests			•	T-tests (Paire	ed samplesu	ses 2 variables	5)			
		k-Sample tests			•	T-Tests (Inde	ependent samj	oles uses gro	ouping variable	e)		
		Regression and	alysis		•	Wilcoxin signed ranks test (Paired samples uses 2 variables)						
		Categorical an	alysis			Mann-Whitne	y (Independe	nt samples u	ises grouping [,]	variable)		
		Cluster analysi	is		Ē	89	0	18	107	1	_	
		Principal compo	onent ar	alysis	6	91	0	21	124	3	}	
		Survival analys	sis		• Z		0	22	118	1		
		Simulation			• B	93	0	17	103	3	}	
		Cellular Autom	ata		9	94	0	29	123	1		
		Word Frequen	су		9	95	0	26	113	1		
		cDNA to AA tra	anslation	1	1	96	0	19	95	3	}	
					12	97	0	19	150	3	}	
					13	98	0	22	95	3	}	
					- 14	99	0	30	107	3	}	

Recall that in the low birth weight data set, the variable "low" takes on a value of 0 when birth weight > = 2500g, and 1 when birth weight < 2500g. Using "low" as the grouping variable for the two groups,

let's test if there is a significant age difference between women giving birth to a normal weight baby (low=0) or low weight baby (low=1). Next, select "age" as the continuous variable, and "low" as the categorical variable, shown as:

Graph	Help)					
		Data	Variables	Results	Images	Log	
		Data id low age lwt race smok ptl ht ui ftv bwt		Results	Images		Run Missing code: _9 A A A A Continuous variables age Categorical variables Iow
		Trar	nsform selecte	ed variable -			

Then, click Run and click on the ^{age} icon and you will observe the following tables containing results:

T-Test (Independent samples)						
Test var:	Equal variances assumed					
Grouping var:	Grouping var: Low					
	1					
Sample Size (n_1, n_2):	130	59				
Average [avg(x), avg(y)]:	23.6615	22.3051				
Variance [var(x), var(y)]:	31.1869	20.3536				
Equal variance test:	F-ratio: 0.2916(1,187)	Prob: 0.4102				

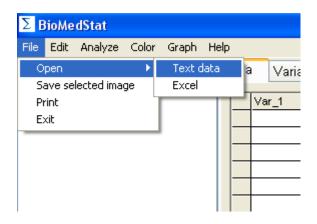
		$\frac{(n-k)\sum_{i=1}^{k}n_{i}(Z_{i.}-Z_{})^{2}}{k-1)\sum_{i=1}^{k}\sum_{j=1}^{n_{i}}(Z_{ij}-Z_{i.})^{2}} -1, n-k)$)2	
Numerator: avg(x)-avg(y)		1.35	$\overline{55} \overline{\overline{X}}_1 - \overline{\overline{X}}_2$	
Pooled common variance		27.82	58 $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)}{n_1 + n_2 - 2}$	$)s_2^2$
Denominator		0.82	31 $s_p^2 \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	
Test Statistic		1.63	B1 $\frac{\overline{X}_1 - \overline{X}_2}{s_p^2 \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	
d.f.		1	37 $n_1 + n_2 - 2$	
P-value		0.10	72	
		0.	00	
Mean permutation t		0.10	28	
Mean permutation t Permutation p-value				
-		99	99	
Permutation p-value	T-Tes	99 st (Independent sample age		med
Permutation p-value Iterations	T-Tes	st (Independent sample age Iow	s) Unequal variances assu	med
Permutation p-value Iterations Test var: Grouping var:		st (Independent sample age Iow 1	5)	
Permutation p-value Iterations Test var: Grouping var: Sample Size (n_1,	n_2):	et (Independent sample age low 1 130	s) Unequal variances assu 2	59
Permutation p-value Iterations Test var: Grouping var: Sample Size (n_1, Average [avg(x), av	n_2): /g(y)]:	st (Independent sample age low 1 130 23.6615	s) Unequal variances assu 2 22.3	59 3051
Permutation p-value Iterations Test var: Grouping var: Sample Size (n_1, Average [avg(x), av Variance [var(x), va	n_2): /g(y)]: ar(y)]:	st (Independent sample age low 1 130 23.6615 31.1869	s) Unequal variances assur 2 22.3 20.3	59
Permutation p-value Iterations Test var: Grouping var: Sample Size (n_1, Average [avg(x), av	n_2): /g(y)]: ar(y)]:	st (Independent sample age low 1 130 23.6615 31.1869 1.3565	s) Unequal variances assure 2 22.3 20.3 $\overline{X_1} - \overline{X_2}$	59 3051
Permutation p-value Iterations Test var: Grouping var: Sample Size (n_1, Average [avg(x), av Variance [var(x), va	n_2): /g(y)]: ar(y)]: avg(y)	st (Independent sample age low 1 130 23.6615 31.1869 1.3565	s) Unequal variances assur 2 22.3 20.3	59 3051
Permutation p-value Iterations Test var: Grouping var: Sample Size (n_1, Average [avg(x), av Variance [var(x), va Numerator: avg(x)-a	n_2): /g(y)]: ar(y)]: avg(y) inator	st (Independent sample age low 1 130 23.6615 31.1869 1.3565 0.7648	s) Unequal variances assure 2 22.3 20.3 $\overline{X_1} - \overline{X_2}$	59 3051
Permutation p-value Iterations Test var: Grouping var: Sample Size (n_1, Average [avg(x), av Variance [var(x), va Numerator: avg(x)-a Denomi	n_2): /g(y)]: ar(y)]: avg(y) inator atistic	et (Independent sample age low 1 130 23.6615 31.1869 1.3565 0.7648 1.7737	s) Unequal variances assurt 2 22.3 20.3 $\overline{X}_1 - \overline{X}_2$ $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	59 3051 3536
Permutation p-value Iterations Test var: Grouping var: Sample Size (n_1, Average [avg(x), av Variance [var(x), va Numerator: avg(x)-a Denomi Test Sta d.f. (Dixon & Massey corre	n_2): /g(y)]: ar(y)]: avg(y) inator atistic	et (Independent sample age low 1 130 23.6615 31.1869 1.3565 0.7648 1.7737	s) Unequal variances assure 2 22.3 $\overline{X}_1 - \overline{X}_2$ $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ $\overline{X}_1 - \overline{X}_2$ $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ $\overline{X}_1 - \overline{X}_2$ $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	59 3051 3536

Permutation p-value	0.0766	
Iterations	9999	
*Daniel, W.W. The t Distribution (for Analysis in the Health Sciences		

The first table contains results for Levene's variance ratio test for equal variances, as well as the t-test results assuming equal variances. The equal variance test has a resulting p-value of 0.42, so we accept the null hypothesis that the variances are equal. The test statistic for the t-test (assuming equal variances) is 1.638, for which the p-value is 0.11, so for these data there is not a significant difference in age between mothers giving birth to low and normal weight babies.

The SPSS(12) benchmarked results are:

Group Statistics


	low	N	Mean	Std. Deviation	Std. Error Mean
age	0	130	23.662	5.5845	.4898
	1	59	22.305	4.5115	.5873

Independent Samples Test

		Levene's Test for Equality of Variances				t-test for Equality of Means			
									95% Confid of the D
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower
age	Equal variances assumed	3.429	.066	1.638	187	.103	1.3565	.8281	2771
	Equal variances not assumed			1.774	136.941	.078	1.3565	.7648	1558

Example 7 – Non-parametric independent 2-sample Mann-Whitney U Test

This example uses the Hosmer and Lemeshow low birth weight data described in detail in Example 2. To begin, select File, Open, Text data, as shown below:

and the Input format popup window will appear:

Σ Input Format	
Text format Tab-delimited Comma delimited Space delimited Variable names in first row Record names in last column	ок

check the "Variable names in first row" option and click OK. Open the Hosmer and Lemeshow low birth weight data file as shown below:

Open						? 🛛
Look in:	🚞 BioMedStat		<u> </u>) 🖻 🖻	••	
Recent Desktop My Documents	🗐 Forthofer_Table	283_wilcoxin e_3.5_differential e_3.5_sum_to_zero how_low_birth_weight _CaL _CaL abetes 2_Friedman				
My Computer						
	File name:	Hosmer&Lemeshow_low_birth	_weight	~		Open
My Network	Files of type:	Tab-delimited text (*.txt)		~		Cancel

In the Analyze pull-down menu select 2-sample tests, then T-tests (independent samples) shown as:

dStat						
Analyze Color Graph Help						
Summary statistics Correlation analysis						
L Covariance analysis		id	low	age	lwt	race s
2-Sample tests	•	T-tests (Paire	d samplesu:	ses 2 variables	;)	1
k-Sample tests	•	T-Tests (Independent samples uses grouping variable))
Regression analysis	•	 Wilcoxin signed ranks test (Paired samples uses 2 variables) 				
Categorical analysis	•	Mann-Whitne	y (Independei	nt samples u	ises grouping v	variable)
Cluster analysis	Ē	89	0	18	107	1
Principal component analysis	6	δ <mark>91</mark>	0	21	124	3
Survival analysis	•	7 92	0	22	118	1
Simulation	•	3 93	0	17	103	3
Cellular Automata	-	9 94	0	29	123	1
Word Frequency	- 6) 95	0	26	113	1
cDNA to AA translation	1	96	0	19	95	3
	12	2 97	0	19	150	3
	4.5	00 00	0		05	

Next, select "age" as the continuous variable, and "low" as the categorical variable, shown as:

Graph H	telp	
	Data Variables Results Images Log	
	id low age lwt	Run /issing code: _99
	Transform selected variable	

Then, click Run and click on the ^{age} icon and you will observe the following tables containing results:

Mann-Whitney Test						
Test var:	Test var: age					
Grouping var:	low					
	1	2				
Sample Size	130	59				
R	12753.00	5202.00				
U1,U2	3432.00	4238.00				
U based on Min(U1,U2)	3432.00					
Mean U	3835.00	-				
s.d.(U)	348.48	_				
Z-score	-1.16	-				
P-value	0.3014	-				
P-value(Permutation)	0.2467					

Avg. perm. Z	-0.7980	
Iterations	9999	

Benchmark results from SPSS(12) are:

Ranks

	low	N	Mean Rank	Sum of Ranks
age	0	130	98.10	12753.00
	1	59	88.17	5202.00
	Total	189		

Test Statistics(a)

	age
Mann-Whitney U	3432.000
Wilcoxon W	5202.000
Z	-1.159
Asymp. Sig. (2- tailed)	.247

a Grouping Variable: low

Example 8 – Parametric independent k-sample Analysis of Variance

This example focuses on a one-way analysis of variance (ANOVA) to determine statistically significant differences between age among three racial groups in the Hosmer and Lemeshow low birth weight data described in Example 2. In the low birth weight study, the categorical variable "race" was coded to represent 1-white, 2-black, and 3-other. In the following procedures, we will use BioMedStat to test for a significant difference in age among the three groups using an independent k-sample F-test as part of the ANOVA.

To start, open the Hosmer and Lemeshow data set as described in Example 2. Under the "k-sample" command of the Analyze pull-down menu specify "F-test (independent samples)," shown as follows:

edS	itat											
Ar	nalyze	Color	Graph	Help								
Г	Summary statistics Variables Results Images Log											
1	Covari	iance an	alysis				id	low	age	lwt	race	smoke
1	2-Sam	ple tests			۰.	1	85	0	19	182	2	
	k-Sam	ple tests			Þ		F-test (Paired	d Samples us	ses k variables)		
	Regre:	ssion and	alysis		⊁		F-test (Indep	endent Sample	es - uses grou	ping variable)		
-	Categ	orical an	alysis		►		Friedman tes	t (Paired - use	s k variables)			
	Cluste	r analysi	s				Kruskal-Wallis	; test (Indeper	ndent Samples	uses groupi	ing variable)	
	Princip	al compo	onent an	alysis	l	6	91	0	21	124	3	_
	Surviv	al analys	is		۲	7	92	0	22	118	1	
	Simula	tion			۲	8	93	0	17	103	3	
	Cellula	r Autom	ata			9	94	0	29	123	1	
	Word	Frequen	cy			D	95	0	26	113	1	
	cDNA I	to AA tra	anslation	1		1	96	0	19	95	3	
-						12	97	0	19	150	3	
					1	13	98	0	22	95	3	

Select age as the continuous variable and race as the categorical variable, and then click on Run.

lp						
Data	Variables	Results	Images	Log		
id low age lwt race smok ptl ht ui ftv bwt					Continuous variables age Categorical variables race	Missing
Trar	nsform selecte	d variable -		1		

The results of the ANOVA re shown as follows:

Analysis of Var			
Test var:	age		
Grouping var:	race		
Group:	Sample size	Mean	s.d.
1	96	24.292	5.655
2	26	21.538	5.109
3	67	22.388	4.536
ANOVA Table	SS	MSE	F(v_1,v_2)
Treatment	230.08	115.04	4.24 (2, 186)
Error	5048.21	27.14	
P-value	0.0158		
P-value(Permutation)	0.0810		
Avg. perm. F-ratio	2.0286		
Iterations	1000		

SPSS(ANOVA) results for the same ANOVA are:

Descriptives

age 95% Confidence Interval for Mean Std. Deviation Lower Bound Upper Bound Maximum Mean Std. Error Minimum Ν 1 45 96 24.292 5.6548 .5771 23.146 25.437 14 2 26 21.538 5.1087 1.0019 19.475 23.602 15 35 3 33 67 22.388 4.5359 .5541 21.282 23.494 14 Total 189 23.238 5.2987 .3854 22.478 23.998 14 45

ANOVA

age					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	230.080	2	115.040	4.239	.016
Within Groups	5048.205	186	27.141		
Total	5278.286	188			

Example 9 – Non-parametric independent k-sample Kruskal-Wallis Test

Open the Hosmer and Lemeshow data (see Example 2), and specify a Kruskal-Wallis test:

le	dStat												
t	Analyze Color Graph Help												
•	Summary statistics Correlation analysis			Variables	Results I	mages Log	1						
····	Covariance analysis			id	low	age	lwt	race	smoke				
	2-Sample tests		1	85	0	19	182	2					
	k-Sample tests	•		F-test (Paired Samples uses k variables)									
	Regression analysis	•		F-test (Independent Samples - uses grouping variable)									
	Categorical analysis	•		Friedman tes	t (Paired - use:	s k variables)							
	Cluster analysis			Kruskal-Wallis	test (Indeper	ndent Samples	uses groupi	ng variable)					
	Principal component analysis	٦	бТ	91	0	21	124	3					
	Survival analysis	•	7	92	0	22	118	1					
	Simulation	•	В	93	0	17	103	3					
	Cellular Automata		9	94	0	29	123	1					
	Word Frequency		D	95	0	26	113	1					
	cDNA to AA translation		1	96	0	19	95	3					
l		1	2	97	0	19	150	3					
		1	3	98	0	22	95	3					

Next, specify age as the continuous variable and race as the categorical variable as

elp						
Data	Variables	Results	Images L	.og		
id low age lwt race smok ptl ht ui ftv bwt	e				Continuous variables age Categorical variables race	Missing
Trar	nsform selecte	ed variable =				

And then click on Run. The results of the Kruskal-Wallis test are shown below:

Kruskal-Wal	lis Test		
Test var:	age		
Grouping var:	race		
Group:	Sample size, n(j)	Sum of ranks, R(j)	Average rank, R(j)/n(j)
1	96	10055.50	104.74
2	26	1968.00	75.69
3	67	5931.50	88.53
Chi-square (d.f.)	7.22 (2)		
P-value	0.0270	-	
P-value(Permutation)	0.0190	-	
Avg. perm. Chi-square	1.9026		
Iterations	1000		

Benchmark results for SPSS(12) are:

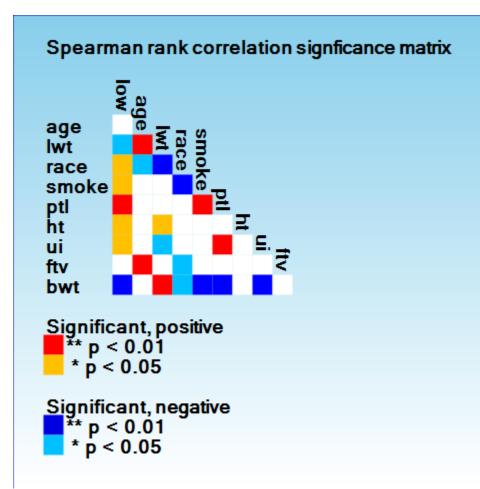
Ranks

	race	Ν	Mean Rank
age	1	96	104.74
	2	26	75.69
	3	67	88.53
	Total	189	

Test Statistics(a,b)

	age
Chi-Square	7.251
df	2
Asymp. Sig.	.027

a Kruskal Wallis Test


b Grouping Variable: race

Example 10 – Pearson product moment and Spearman rank correlation

Using the Hosmer and Lemeshow data again, below are the BioMedStat results for correlation analysis.

Pearson Correlation Matrix	_								
	low	age	lwt	race	smoke	ptl	ht	Ui	ftv
age	-0.12								
lwt	-0.17*	0.18*							
race	0.14	-0.17*	-0.17*						
smoke	0.16*	-0.04	-0.04	-0.34**					
ptl	0.20**	0.07	-0.14	0.01	0.19**				
ht	0.15*	-0.02	0.24**	0.02	0.01	-0.02			
ui	0.17*	-0.08	-0.15*	0.05	0.06	0.23**	-0.11	-	
ft∨	-0.06	0.22**	0.14	-0.10	-0.03	-0.04	-0.07	-0.06	
bwt	-0.79**	0.09	0.19**	-0.20**	-0.19**	-0.15*	-0.15*	-0.28**	0.06

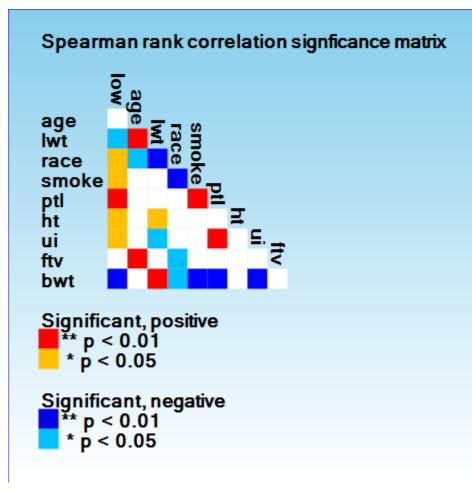
Significant, negative: ** p < 0.01 * p < 0.05 *Significant, positive*: ** p < 0.01 * p < 0.05

SPSS(12) benchmarking results for Pearson correlation are:

Correlations

		low	age	lwt	race	smoke	ptl	ht	ui
low	Pearson Correlation	1	119	170(*)	.138	.161(*)	.196(**)	.152(*)	.169(*)
	Sig. (2-tailed)		.103	.020	.059	.027	.007	.036	.020
	Ν	189	189	189	189	189	189	189	189
age	Pearson Correlation	119	1	.180(*)	173(*)	044	.072	016	075
	Sig. (2-tailed)	.103		.013	.017	.545	.328	.829	.304
	N	189	189	189	189	189	189	189	189
lwt	Pearson Correlation	170(*)	.180(*)	1	165(*)	044	140	.236(**)	153(*)
	Sig. (2-tailed)	.020	.013		.023	.546	.055	.001	.036
	N	189	189	189	189	189	189	189	189
race	Pearson Correlation	.138	173(*)	165(*)	1	339(**)	.008	.020	.054

	Sig. (2-tailed)	.059	.017	.023		.000	.914	.785	.464
	Ν	189	189	189	189	189	189	189	189
smoke	Pearson Correlation	.161(*)	044	044	339(**)	1	.188(**)	.013	.062
	Sig. (2-tailed)	.027	.545	.546	.000		.010	.855	.395
	Ν	189	189	189	189	189	189	189	189
ptl	Pearson Correlation	.196(**)	.072	140	.008	.188(**)	1	015	.228(**)
	Sig. (2-tailed)	.007	.328	.055	.914	.010		.833	.002
	Ν	189	189	189	189	189	189	189	189
ht	Pearson Correlation	.152(*)	016	.236(**)	.020	.013	015	1	109
	Sig. (2-tailed)	.036	.829	.001	.785	.855	.833		.137
	Ν	189	189	189	189	189	189	189	189
ui	Pearson Correlation	.169(*)	075	153(*)	.054	.062	.228(**)	109	1
	Sig. (2-tailed)	.020	.304	.036	.464	.395	.002	.137	
	Ν	189	189	189	189	189	189	189	189
ftv	Pearson Correlation	063	.215(**)	.141	098	028	044	072	060
	Sig. (2-tailed)	.389	.003	.054	.178	.702	.544	.322	.416
	Ν	189	189	189	189	189	189	189	189
bwt	Pearson Correlation	785(**)	.090	.186(*)	196(**)	189(**)	155(*)	146(*)	283(**)
	Sig. (2-tailed)	.000	.219	.010	.007	.009	.034	.045	.000
	Ν	189	189	189	189	189	189	189	189


* Correlation is significant at the 0.05 level (2-tailed).
 ** Correlation is significant at the 0.01 level (2-tailed).

The Spearman rank correlation results from BioMedStat are:

Spearman Correlation Matrix									
	low	age	Lwt	race	smoke	ptl	ht	ui	ftv
age	-0.08								
lwt	-0.18*	0.19**							
race	0.14*	-0.15*	-0.19**						
smoke	0.16*	-0.05	-0.09	-0.34**					
ptl	0.26**	0.12	-0.11	0.04	0.19**	1			
ht	0.15*	-0.01	0.17*	0.02	0.01	0.00]		
ui	0.17*	-0.08	-0.18*	0.05	0.06	0.19**	-0.11		
ft∨	-0.09	0.23**	0.09	-0.15*	-0.08	-0.01	-0.08	-0.06	
bwt	-0.80**	0.06	0.25**	-0.18*	-0.20**	-0.20**	-0.11	-0.27**	0.07

Significant, negative:

while the SPSS(12) benchmarking results for Spearman rank correlation are:

Correlations

Spearman		low	age	lwt	race	smoke	ptl	ht	ui
low	Correlation Coefficient	1.000	085	182(*)	.142	.161(*)	.261(**)	.152(*)	.169(*)
	Sig. (2-tailed)		.248	.012	.051	.027	.000	.036	.020
	Ν	189	189	189	189	189	189	189	189
age	Correlation Coefficient	085	1.000	.186(*)	152(*)	048	.119	005	075
	Sig. (2-tailed)	.248		.010	.037	.515	.104	.944	.302
	Ν	189	189	189	189	189	189	189	189
lwt	Correlation Coefficient	182(*)	.186(*)	1.000	189(**)	085	111	.170(*)	175(*)
	Sig. (2-tailed)	.012	.010		.009	.243	.129	.019	.016
	Ν	189	189	189	189	189	189	189	189
race	Correlation	.142	152(*)	189(**)	1.000	338(**)	.036	.024	.051

	Coefficient		I						
	Sig. (2-tailed)	.051	.037	.009	.	.000	.623	.742	.482
	Ν	189	189	189	189	189	189	189	189
smoke	Correlation Coefficient	.161(*)	048	085	338(**)	1.000	.187(**)	.013	.062
	Sig. (2-tailed)	.027	.515	.243	.000	· ·	.010	.855	.395
	Ν	189	189	189	189	189	189	189	189
ptl	Correlation Coefficient	.261(**)	.119	111	.036	.187(**)	1.000	.002	.194(**
	Sig. (2-tailed)	.000	.104	.129	.623	.010		.980	.008
	Ν	189	189	189	189	189	189	189	189
ht	Correlation Coefficient	.152(*)	005	.170(*)	.024	.013	.002	1.000	109
	Sig. (2-tailed)	.036	.944	.019	.742	.855	.980		.137
	Ν	189	189	189	189	189	189	189	189
ui	Correlation Coefficient	.169(*)	075	175(*)	.051	.062	.194(**)	109	1.00
	Sig. (2-tailed)	.020	.302	.016	.482	.395	.008	.137	
	Ν	189	189	189	189	189	189	189	18
ftv	Correlation Coefficient	086	.234(**)	.089	155(*)	083	014	080	05
	Sig. (2-tailed)	.239	.001	.223	.034	.254	.845	.275	.44
	Ν	189	189	189	189	189	189	189	18
bwt	Correlation Coefficient	803(**)	.061	.248(**)	184(*)	196(**)	204(**)	115	266(**
	Sig. (2-tailed)	.000	.404	.001	.011	.007	.005	.117	.00
	Ν	189	189	189	189	189	189	189	18

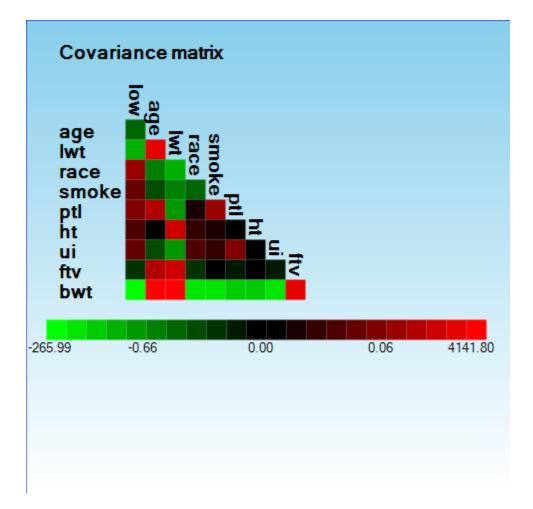
* Correlation is significant at the 0.05 level (2-tailed).
 ** Correlation is significant at the 0.01 level (2-tailed).

Example 11 – Covariance analysis

Using the Hosmer and Lemeshow data again, below are the BioMedStat results for covariance analysis.

Color Scale																					
- 265.99	- 67.47	- 26.04	- 2.41	- 1.66	- 0.66	- 0.15	- 0.11	- 0.03	- 0.02	- 0.02	0.00	0.00	0.01	0.02	0.04	0.04	0.06	1.21	4.55	44.99	4141.80

Covariance Matrix									
	-		1	1					
	low	age	lwt	race	smoke	ptl	ht	ui	ftv
age	-0.29		_						
lwt	-2.41	29.18							
race	0.06	-0.84	-4.63						
smoke	0.04	-0.11	-0.66	-0.15	[
ptl	0.04	0.19	-2.11	0.00	0.05				


ht	0.02	-0.02	1.77	0.00	0.00	0.00			
ui	0.03	-0.14	-1.66	0.02	0.01	0.04	-0.01		
ftv	-0.03	1.21	4.55	-0.10	-0.01	-0.02	-0.02	-0.02	
bwt	-265.99	347.14	4141.80	-131.36	-67.47	-55.65	-26.04	-73.61	44.99

The SPSS(12) covariance matrix is shown below:

Inter-Item Covariance Matrix

	low	age	lwt	race	smoke	ptl	ht	ui	ftv	bwt
low	.216	293	-2.410	.059	.037	.045	.017	.028	031	-265.99
age	293	28.076	29.177	841	115	.187	021	142	1.209	347.14
lwt	-2.410	29.177	935.099	-4.635	661	-2.112	1.767	-1.664	4.552	4141.79
race	.059	841	-4.635	.843	152	.004	.004	.018	096	-131.35
smoke	.037	115	661	152	.240	.045	.002	.011	015	-67.47
ptl	.045	.187	-2.112	.004	.045	.243	002	.040	023	-55.65
ht	.017	021	1.767	.004	.002	002	.060	009	019	-26.03
ui	.028	142	-1.664	.018	.011	.040	009	.127	022	-73.60
ftv	031	1.209	4.552	096	015	023	019	022	1.122	44.99
bwt	-265.993	347.141	4141.798	-131.356	-67.471	-55.650	-26.037	-73.608	44.992	531473.6

The covariance matrix is calculated and used in the analysis.

Example 12 – Chi-square 2-way contingency table analysis

Open the Hosmer and Lemeshow data again (Example 2). Specify a 2-way contingency table analysis.

Σ	BioMe	dStat									
File	Edit	Analyze	Color	Graph	Help						
·			ary stati ation an					Variables	Results I	mages Lo	g
		Covari	iance ar	alysis				id	low	age	lwt
		2-Sam	ple test:	s		۲	1	85	0	19	
		k-Sam	ple tests	5		۲	2	86	0	33	
		Regre:	ssion an	alysis		×.	3	87	0	20	
		Categ	orical ar	alysis		≯		2-way contin	gency tables	21	
		Cluste	r analys	is			5	89	0	18	
		Princip	al comp	onent ar	nalysis		6	91	0	21	
		Surviv	al analy	sis		⊁	7	92	0	22	
		Simula	tion			⊁	8	93	0	17	
		Cellula	r Autom	nata			9	94	0	29	
		Word	Frequer	ю			D	95	0	26	
		cDNA I	to AA tr	anslatior	n i		1	96	0	19	
							12	97	0	19	
							13	98	0	22	

Next select race and smoke as the categorical variables, and click on Run:

əlp				
Da	ata Variables Results II	mages Log		
i i i i i i i i i i i i i i i i i i i	d ow age wt ace smoke otl otl it i tv owt		Categorical variables smoke race	Run Missing code: -99:

The result of the run is as follows:

Chi-Square test			
	Smoke		
	1	2	Total

race	1	44	52	96
	2	16	10	26
	3	55	12	67
	Total	115	74	189
	Chi-square (d.f.)	21.78(2)		
	Tabled chi-square(0.95)	6.4516		
	P-value	0.0000		
	Iterations	1000		
	Mult. prob (observed)	8.97795524039906E-06		
	Randomization P-value	0.0000		

SPSS(12) results are as follows:

race * smoke Crosstabulation

Count

		sme	oke	
		0	Total	
race	1	44	52	96
	2	16	10	26
	3	55	12	67
Total		115	74	189

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi- Square	21.779(a)	2	.000
Likelihood Ratio	22.997	2	.000
Linear-by-Linear Association	21.609	1	.000
N of Valid Cases	189		

a 0 cells (.0%) have expected count less than 5. The minimum expected count is 10.18.

Example 13 – Linear regression

Open the Hosmer and Lemeshow data again (Example 2). Specify a linear regression as shown below:

Σ	lioMe	dStat									
File	Edit	Analyze	Color	Graph	Help						
-	-		ary stati ation an					Variables	Results	Ima	ges
		Covari	iance ar	nalysis				id	low	age	е
		2-Sam	ple test:	s		•	1	85		0	
		k-Sam	ple tests	5		Э,	2	86		0	
		Regre	ssion an	alysis		×		Linear			
		Categ	orical ar	nalysis		Þ		Poisson			
		Cluste	r analys	is				Logistic - Unc	onditional		
		Princip	al comp	onent ar	nalysis			Logistic - Con	ditional		
		Surviv	al analy	sis		•		Logistic - Poly	/tomous	[
		Simula	tion			•		Linear Catego	orical	[
		Cellula	r Autom	nata				Cox proportio	onal hazards	5 [
		Word	Frequer	ю		L	D	95		이	
		cDNA	to AA tr	anslatior	n i		1	96		0	
						1	2	97		0	

Next, specify low as the dependent variable and all other variables except for race as the independent variables (shown below), and click on Run:

	L								
16	lp								
	Data	Variables	Results	Images	Log				
	id Iow age Iwt race					• .	Dependent variable Iow		Run Missing code: _9999
	smok ptl ht ui ftv	e							Constant ⓒ Constant
	bwt					⇒	Continuous variables bwt ftv	_	
						4	ui ht ptl smoke lwt		
						⇒	Categorical variables		

The result of the run is as follows:

Linear Regression

Dependent variable: low

	Reg	ression Coef	ficients		
Variable	Coef.	s.e.	Wald	Prob.	Score
Const	1.9292	0.1647	137.2897	0.0000	0.0000
age	-0.0050	0.0042	1.4596	0.2144	0.0000
lwt	-0.0003	0.0007	0.1946	0.6591	0.0000
smoke	-0.0027	0.0443	0.0038	0.9508	0.0000
ptl	0.0897	0.0451	3.9572	0.0461	0.0000
ht	0.0685	0.0917	0.5587	0.4548	0.0000
ui	-0.1002	0.0637	2.4790	0.1125	0.0000
ftv	0.0000	0.0205	0.0000	0.9993	0.0000
bwt	-0.0005	0.0000	244.4939	0.0000	0.0000

The SPSS(12) result of the run are as follows:

Coefficients(a)

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B Std. Error		Beta		
1	(Constant)	1.927	.149		12.948	.000
	age	005	.004	057	-1.208	.229
	lwt	.000	.001	022	441	.660
	smoke	003	.044	003	062	.951
	ptl	.090	.045	.095	1.989	.048
	ht	.069	.092	.036	.747	.456
	ui	100	.064	077	-1.574	.117
	ftv	-1.779E-05	.021	.000	001	.999
	bwt	.000	.000	778	-15.636	.000

a Dependent Variable: low

Example 13 – Logistic regression (unconditional)

Open the Hosmer and Lemeshow data (Example 2), and specify Regression \rightarrow Unconditional logistic. Highlight the race variable as shown below:

Next, click on the "Expand into dichotomous indicator variables" button as shown below:

Transform selected variable
Expand into dichotomous
indicator variables
Recode into quartiles
Standardize
Logarithm Exponentiate
OLog_e OLog_10 OLog_2

1	Data	Variables	Results	Images	Log
	id low age lwt race smok ptl ht ui ftv	1	Results	Images	
	bwt race_ race_ race_	(2)			

Now add low as he "case" variable and age, lwt, race_(2), race(3), and ftv as independent variables, as shown below:

Data Variables Results Images Lo	g	
id low age lwt race	Cases . Iow	Run Missing code: _9999
smoke ptl ht ui ftv	Continuous variables	Constant Constant
bwt race_(1) race_(2) race_(3)	ftv race_(3) race_(2) lwt age	
	Categorical variables	

Click on Run. The results are shown below:

Unconditional Logistic Regression

Regression Coefficients									
Variable	Coef.	s.e.	Wald	Prob.	Score				
Const	1.2954	1.0714	1.4617	0.2141	0.0000				
age	-0.0238	0.0337	0.4988	0.4800	0.0000				
lwt	-0.0142	0.0065	4.7430	0.0292	0.0000				
race_(2)	1.0039	0.4979	4.0660	0.0433	0.0000				
race_(3)	0.4331	0.3622	1.4296	0.2186	0.0000				
ftv	-0.0493	0.1672	0.0869	0.7681	0.0000				

Odds Ratios								
Variable OR Lower 95% CI Upper 95								
Const	3.652331566	0.447238627	29.826417184					
age	0.976458553	0.913992390	1.043193923					
lwt	0.985856363	0.973298538	0.998576214					
race_(2)	2.728897888	1.028492574	7.240580891					
race_(3)	1.542043413	0.758143585	3.136474321					
ftv	0.951887601	0.685849579	1.321120596					

Contrasts

Const	age	lwt	race_(2)	race_(3)	ftv	RR	Lower 95% CI	Upper 95% CI	Chi- square	Prob
	+	+				0.96	0.90	1.03	0.00	1.0000
	+		+			2.66	1.00	7.13	4.06	0.1312
	+			+		1.51	0.45	5.08	1.43	0.4897
	+				+	0.93	0.26	3.27	0.00	1.0000
		+	+			2.69	1.02	7.13	4.07	0.1309
		+		+		1.52	0.46	5.08	1.43	0.4894
		+			+	0.94	0.27	3.27	0.00	1.0000
			+	+		4.21	1.15	15.36	4.41	0.1102
			+		+	2.60	0.68	9.87	4.07	0.1309

$$										
+ + + + 1.48 0.35 6.34 1.43 0.6991 + + + - 0.92 0.21 4.06 0.00 1.0000 + + + + 0.57 29.65 4.21 0.2492 + + + + 2.54 0.34 18.78 4.06 0.2660 + + + + 1.43 0.17 12.37 1.40 0.7052 + + + + 4.15 0.33 52.30 4.41 0.2285				+	+	1.47	0.66	3.25	1.40	0.4958
+ + + 0.92 0.21 4.06 0.00 1.0000 + + + 4.11 0.57 29.65 4.21 0.2492 + + + + 2.54 0.34 18.78 4.06 0.2660 + + + + 1.43 0.17 12.37 1.40 0.7052 + + + 4.15 0.33 52.30 4.41 0.2285	+	+	+			2.63	0.74	9.31	4.06	0.2660
+ + + 4.11 0.57 29.65 4.21 0.2492 + + + 2.54 0.34 18.78 4.06 0.2660 + + + + 1.43 0.17 12.37 1.40 0.7052 + + + + 4.15 0.33 52.30 4.41 0.2285	+	+		+		1.48	0.35	6.34	1.43	0.6991
+ + + 2.54 0.34 18.78 4.06 0.2660 + + + + 1.43 0.17 12.37 1.40 0.7052 + + + + 4.15 0.33 52.30 4.41 0.2285	+	+			+	0.92	0.21	4.06	0.00	1.0000
+ + + 1.43 0.17 12.37 1.40 0.7052 + + + + 4.15 0.33 52.30 4.41 0.2285	+		+	+		4.11	0.57	29.65	4.21	0.2492
+ + + 4.15 0.33 52.30 4.41 0.2285	+		+		+	2.54	0.34	18.78	4.06	0.2660
	+			+	+	1.43	0.17	12.37	1.40	0.7052
+ + + 2.56 0.20 32.96 4.07 0.2655		+	+	+		4.15	0.33	52.30	4.41	0.2285
		+	+		+	2.56	0.20	32.96	4.07	0.2655
+ + + 1.45 0.10 21.03 1.40 0.7048		+		+	+	1.45	0.10	21.03	1.40	0.7048
+ + + 4.01 0.20 81.46 4.41 0.2290			+	+	+	4.01	0.20	81.46	4.41	0.2290

SPSS(12) results are:

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1(a)	age	024	.034	.499	1	.480	.976
()	lwt	014	.007	4.743	1	.029	.986
	race			4.411	2	.110	
	race(1)	1.004	.498	4.066	1	.044	2.729
	race(2)	.433	.362	1.430	1	.232	1.542
	ftv	049	.167	.087	1	.768	.952
	Constant	1.295	1.071	1.462	1	.227	3.652

a Variable(s) entered on step 1: age, lwt, race, ftv.

The same regression coefficients and standard errors are listed in Table 2.2 on page 30 of Hosmer and Lemeshow, Applied Logistic Regression, New York, Wiley, 1989.