Not found

Xuewu Liu, PhD

Associate Professor Nanomedicine, Institute for Academic Medicine
Associate Member, Research Institute
Houston Methodist


Biography

Dr. Xuewu Liu worked as an engineer in the optics industry for two years before undertaking postdoctoral training at the Indiana Center for Biological Microscopy at IUPUI Indianapolis. He then joined Ohio State University as a senior research associate in nanomedicine. He was appointed assistant professor of nanomedicine and biomedical engineering at the University of Texas Health Science Center in Houston in 2006. In 2010, Dr. Liu joined to The Methodist Hospital Research Institute, to direct the nanoengineering core.

Dr. Xuewu Liu is a leading scientist in silicon nanotechnology, with extensive experience in materials science, optics, microfabrication and nanomedicine. He directs research and development of silicon based biomedical nanotechnology, and coordinates a nanoengineering team to support biomedical research at the institute levels. The nanomedicine platforms he has developed include porous silicon particles, nanowire barcodes, an implantable nanochannel delivery system, nanowire enhanced nanofluidic devices, and nanoporous proteomic chips. Dr. Liu had been issued 8 US patents, and published over 100 peer-reviewed journal papers, of which >20 were highlighted as journal cover articles.

Description of Research

Dr. Liu’s research focus is the development of silicon based nanotechnology platforms for prevention, diagnosis and treatment of human disease. His current interests include mass production of porous silicon particles, surface chemistry of porous silicon, nanowire theranostic platforms, multifunctional nanoparticles, and microfluidics devices for isolation and analysis of exosomes.

Areas Of Expertise

Silicon nanotechnology Drug delivery nanoparticles Theranostics Biological microfluidics
Education & Training

Postdoctoral Associate , Heart and Lung Research Institute
Postdoctoral Associate , Indiana Center for Biological Microscopy, Indianapolis, IN
MS , Jilin University
PhD , Kent State University
Publications

Gemcitabine enhances the transport of nanovector-albumin-bound paclitaxel in gemcitabine-resistant pancreatic ductal adenocarcinoma
Borsoi, C, Leonard, F, Lee, Y, Zaid, M, Elganainy, D, Alexander, JF, Kai, M, Liu, YT, Kang, Y, Liu, X, Koay, EJ, Ferrari, M, Godin, B & Yokoi, K 2017, Cancer Letters, vol 403, pp. 296-304. DOI: 10.1016/j.canlet.2017.06.026

Macrophage polarization contributes to the anti-tumoral efficacy of mesoporous nanovectors loaded with albumin-bound paclitaxel
Leonard, F, Curtis, LT, Ware, MJ, Nosrat, T, Liu, X, Yokoi, K, Frieboes, HB & Godin, B 2017, Frontiers in Immunology, vol 8, no. JUN, 693. DOI: 10.3389/fimmu.2017.00693

Highly efficient genome editing of human hematopoietic stem cells via a nano-silicon-blade delivery approach
Ma, Y, Han, X, Quintana Bustamante, O, Bessa De Castro, R, Zhang, K, Zhang, P, Li, Y, Liu, Z, Liu, X, Ferrari, M, Hu, Z, Carlos Segovia, J & Qin, L 2017, Integrative Biology (United Kingdom), vol 9, no. 6, pp. 548-554. DOI: 10.1039/c7ib00060j

Enhancing Vascularization through the Controlled Release of Platelet-Derived Growth Factor-BB
Minardi, S, Pandolfi, L, Taraballi, F, Wang, X, De Rosa, E, Mills, ZD, Liu, X, Ferrari, M & Tasciotti, E 2017, ACS Applied Materials and Interfaces, vol 9, no. 17, pp. 14566-14575. DOI: 10.1021/acsami.6b13760

Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles
Shen, J, Liu, H, Mu, C, Wolfram, J, Zhang, W, Kim, HC, Zhu, G, Hu, Z, Ji, LN, Liu, X, Ferrari, M, Mao, ZW & Shen, H 2017, Nanoscale, vol 9, no. 16, pp. 5329-5341. DOI: 10.1039/c7nr00377c

The active modulation of drug release by an ionic field effect transistor for an ultra-low power implantable nanofluidic system
Bruno, G, Canavese, G, Liu, X, Filgueira, CS, Sacco, A, Demarchi, D, Ferrari, M & Grattoni, A 2016, Nanoscale, vol 8, no. 44, pp. 18718-18725. DOI: 10.1039/c6nr06235k

Enzyme-responsive multistage vector for drug delivery to tumor tissue
Mi, Y, Wolfram, J, Mu, C, Liu, X, Blanco, E, Shen, H & Ferrari, M 2016, Pharmacological Research, vol 113, pp. 92-99. DOI: 10.1016/j.phrs.2016.08.024

In situ growth of fluorescent silicon nanocrystals in a monolithic microcapsule as a photostable, versatile platform
Zhu, G, Huang, Y, Bhave, G, Wang, Y, Hu, Z & Liu, X 2016, Nanoscale, vol 8, no. 34, pp. 15645-15657. DOI: 10.1039/c6nr03829h

A pyruvate decarboxylase-mediated therapeutic strategy for mimicking yeast metabolism in cancer cells
Scott, B, Shen, J, Nizzero, S, Boom, K, Persano, S, Mi, Y, Liu, X, Zhao, Y, Blanco, E, Shen, H, Ferrari, M & Wolfram, J 2016, Pharmacological Research, vol 111, pp. 413-421. DOI: 10.1016/j.phrs.2016.07.005

Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions
Leonard, F, Curtis, LT, Yesantharao, P, Tanei, T, Alexander, JF, Wu, M, Lowengrub, J, Liu, X, Ferrari, M, Yokoi, K, Frieboes, HB & Godin, B 2016, Nanoscale, vol 8, no. 25, pp. 12544-12552. DOI: 10.1039/c5nr07796f

In Situ Reductive Synthesis of Structural Supported Gold Nanorods in Porous Silicon Particles for Multifunctional Nanovectors
Zhu, G, Liu, JT, Wang, Y, Zhang, D, Guo, Y, Tasciotti, E, Hu, Z & Liu, X 2016, ACS Applied Materials and Interfaces, vol 8, no. 18, pp. 11881-11891. DOI: 10.1021/acsami.6b03008

An injectable nanoparticle generator enhances delivery of cancer therapeutics
Xu, R, Zhang, G, Mai, J, Deng, X, Segura-Ibarra, V, Wu, S, Shen, J, Liu, H, Hu, Z, Chen, L, Huang, Y, Koay, E, Huang, Y, Liu, J, Ensor, JE, Blanco, E, Liu, X, Ferrari, M & Shen, H 2016, Nature Biotechnology, vol 34, no. 4, pp. 414-418. DOI: 10.1038/nbt.3506

IL-4 Release from a Biomimetic Scaffold for the Temporally Controlled Modulation of Macrophage Response
Minardi, S, Corradetti, B, Taraballi, F, Byun, JH, Cabrera, F, Liu, X, Ferrari, M, Weiner, BK & Tasciotti, E 2016, Annals of Biomedical Engineering, vol 44, no. 6, pp. 2008-19. DOI: 10.1007/s10439-016-1580-z

Distinct molecular abnormalities underlie unique clinical features of essential thrombocythemia in children
Fu, R, Liu, D, Cao, Z, Zhu, S, Li, H, Su, H, Zhang, L, Xue, F, Liu, X, Zhang, X, Cheng, T, Yang, R & Zhang, L 2016, Leukemia, vol 30, no. 3, pp. 746-749. DOI: 10.1038/leu.2015.167

Cell source determines the immunological impact of biomimetic nanoparticles
Evangelopoulos, M, Parodi, A, Martinez, JO, Yazdi, IK, Cevenini, A, van de Ven, AL, Quattrocchi, N, Boada, C, Taghipour, N, Corbo, C, Brown, BS, Scaria, S, Liu, X, Ferrari, M & Tasciotti, E 2016, Biomaterials, vol 82, pp. 168-177. DOI: 10.1016/j.biomaterials.2015.11.054

A Micro/Nano Composite for Combination Treatment of Melanoma Lung Metastasis
Mi, Y, Mu, C, Wolfram, J, Deng, Z, Hu, T, Liu, X, Blanco, E, Shen, H & Ferrari, M 2016, Advanced Healthcare Materials, vol 5, no. 8, pp. 936-46. DOI: 10.1002/adhm.201500910

Microfluidic interactions between red blood cells and drug carriers by image analysis techniques
DApolito, R, Taraballi, F, Minardi, S, Liu, X, Caserta, S, Cevenini, A, Tasciotti, E, Tomaiuolo, G & Guido, S 2016, Medical Engineering and Physics, vol 38, no. 1, pp. 17-23. DOI: 10.1016/j.medengphy.2015.10.005

Multistage vector delivery of sulindac and silymarin for prevention of colon cancer
Scavo, MP, Gentile, E, Wolfram, J, Gu, J, Barone, M, Evangelopoulos, M, Martinez, JO, Liu, X, Celia, C, Tasciotti, E, Vilar, E & Shen, H 2015, Colloids and Surfaces B: Biointerfaces, vol 136, pp. 694-703. DOI: 10.1016/j.colsurfb.2015.10.005

Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape
DApolito, R, Tomaiuolo, G, Taraballi, F, Minardi, S, Kirui, D, Liu, X, Cevenini, A, Palomba, R, Ferrari, M, Salvatore, F, Tasciotti, E & Guido, S 2015, Journal of Controlled Release, vol 217, pp. 263-272. DOI: 10.1016/j.jconrel.2015.09.013

PLGA-Mesoporous Silicon Microspheres for the in Vivo Controlled Temporospatial Delivery of Proteins
Minardi, S, Pandolfi, L, Taraballi, F, De Rosa, E, Yazdi, IK, Liu, X, Ferrari, M & Tasciotti, E 2015, ACS Applied Materials and Interfaces, vol 7, no. 30, pp. 16364-16373. DOI: 10.1021/acsami.5b03464, 10.1021/acsami.5b03464