Not found

Shiladitya Sengupta,

Houston Methodist
Weill Cornell Medical College


Areas Of Expertise

Cell proliferation Drug resistance Transcription regulation Protein acetylation Genome damage response Genomic instability
Publications

Regulation of oxidized base damage repair by chromatin assembly factor 1 subunit A
Yang, C , Sengupta, S, Hegde, PM, Mitra, J, Jiang, S, Holey, B, Sarker, AH, Tsai, M-S, Hegde, ML & Mitra, S 2016, Nucleic acids research. DOI:

Combining Immune Checkpoint Inhibitors and Kinase-Inhibiting Supramolecular Therapeutics for Enhanced Anticancer Efficacy
Kulkarni, A, Natarajan, SK, Chandrasekar, V, Pandey, PR & Sengupta, S 2016, ACS Nano, vol 10, no. 10, pp. 9227-9242. DOI:

Sustained inhibition of cMET-VEGFR2 signaling using liposome-mediated delivery increases efficacy and reduces toxicity in kidney cancer
Kulkarni, AA, Vijaykumar, VE, Natarajan, SK, Sengupta, S & Sabbisetti, VS 2016, Nanomedicine: Nanotechnology, Biology, and Medicine, vol 12, no. 7, pp. 1853-1861. DOI:

Algorithm for Designing Nanoscale Supramolecular Therapeutics with Increased Anticancer Efficacy
Kulkarni, A, Pandey, P, Rao, P, Mahmoud, A, Goldman, A, Sabbisetti, V, Parcha, S, Natarajan, SK, Chandrasekar, V, Dinulescu, D, Roy, S & Sengupta, S 2016, ACS Nano, vol 10, no. 9, pp. 8154-8168. DOI:

Algorithm for Designing Nanoscale Supramolecular Therapeutics with Increased Anticancer Efficacy
Kulkarni, A, Pandey, P, Rao, P, Mahmoud, A, Goldman, A, Sabbisetti, V, Parcha, S, Natarajan, SK, Chandrasekar, V, Dinulescu, D, Roy, S & Sengupta, S 2016, ACS Nano, vol 10, no. 9, pp. 8154-8168. DOI:

Rationally Designed 2-in-1 Nanoparticles Can Overcome Adaptive Resistance in Cancer
Goldman, A, Kulkarni, A, Kohandel, M, Pandey, P, Rao, P, Natarajan, SK, Sabbisetti, V & Sengupta, S 2016, ACS Nano, vol 10, no. 6, pp. 5823-5834. DOI:

Drug-induced reactive oxygen species (ROS) rely on cell membrane properties to exert anticancer effects
Molavian, HR, Goldman, A, Phipps, CJ, Kohandel, M, Wouters, BG, Sengupta, S & Sivaloganathan, S 2016, Scientific Reports, vol 6, 27439. DOI:

Scaffold attachment factor A (SAF-A) and Ku temporally regulate repair of radiation-induced clustered genome lesions
Hegde, ML, Dutta, A, Yang, C, Mantha, AK, Hegde, PM, Pandey, A, Sengupta, S, Yu, Y, Calsou, P, Chen, D, Lees-Miller, SP & Mitra, S 2016, Oncotarget. DOI:

Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype
Boareto, M, Jolly, MK, Goldman, A, Pietilä, M, Mani, SA, Sengupta, S, Ben-Jacob, E, Levine, H & Onuchic, JN 2016, Journal of the Royal Society Interface, vol 13, no. 118, 20151106. DOI:

Reporter nanoparticle that monitors its anticancer efficacy in real time
Kulkarni, A, Rao, P, Natarajan, S, Goldman, A, Sabbisetti, VS, Khater, Y, Korimerla, N, Chandrasekar, V, Mashelkar, RA & Sengupta, S 2016, Proceedings of the National Academy of Sciences of the United States of America, vol 113, no. 15, pp. E2104-E2113. DOI:

Regulation of limited N-terminal proteolysis of APE1 in tumor via acetylation and its role in cell proliferation
Bhakat, KK, Sengupta, S, Adeniyi, VF, Roychoudhury, S, Nath, S, Bellot, LJ, Feng, D, Mantha, AK, Sinha, M, Qiu, S & Luxon, BA 2016, Oncotarget. DOI:

Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype
Connor, Y, Tekleab, S, Nandakumar, S, Walls, C, Tekleab, Y, Husain, A, Gadish, O, Sabbisetti, V, Kaushik, S, Sehrawat, S, Kulkarni, A, Dvorak, H, Zetter, B, R. Edelman, E & Sengupta, S 2015, Nature Communications, vol 6, 8671. DOI:

Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity
Majumder, B, Baraneedharan, U, Thiyagarajan, S, Radhakrishnan, P, Narasimhan, H, Dhandapani, M, Brijwani, N, Pinto, DD, Prasath, A, Shanthappa, BU, Thayakumar, A, Surendran, R, Babu, GK, Shenoy, AM, Kuriakose, MA, Bergthold, G, Horowitz, P, Loda, M, Beroukhim, R, Agarwal, S, Sengupta, S, Sundaram, M & Majumder, PK 2015, Nature Communications, vol 6, 6169. DOI:

Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition
Goldman, A, Majumder, B, Dhawan, A, Ravi, S, Goldman, D, Kohandel, M, Majumder, PK & Sengupta, S 2015, Nature Communications, vol 6, 6139. DOI:

Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery
Pandey, A, Sarangi, S, Chien, K, Sengupta, P, Papa, AL, Basu, S & Sengupta, S 2014, Nanotechnology, vol 25, no. 44, 445101. DOI:

Sequential application of a cytotoxic nanoparticle and a PI3K inhibitor enhances antitumor efficacy
Pandey, A, Kulkarni, A, Roy, B, Goldman, A, Sarangi, S, Sengupta, P, Phipps, C, Kopparam, J, Oh, M, Basu, S, Kohandel, M & Sengupta, S 2014, Cancer Research, vol 74, no. 3, pp. 675-685. DOI:

PEGylated liposomal Gemcitabine: Insights into a potential breast cancer therapeutic
Papa, AL, Sidiqui, A, Balasubramanian, SUA, Sarangi, S, Luchette, M, Sengupta, S & Harfouche, R 2013, Cellular Oncology, vol 36, no. 6, pp. 449-457. DOI:

Supramolecular nanoparticles that target phosphoinositide-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy
Kulkarni, AA, Roy, B, Rao, PS, Wyant, GA, Mahmoud, A, Ramachandran, M, Sengupta, P, Goldman, A, Kotamraju, VR, Basu, S, Mashelkar, RA, Ruoslahti, E, Dinulescu, DM & Sengupta, S 2013, Cancer Research, vol 73, no. 23, pp. 6987-6997. DOI:

P2Y12 receptor inhibition augments cytotoxic effects of cisplatin in breast cancer
Sarangi, S, Pandey, A, Papa, AL, Sengupta, P, Kopparam, J, Dadwal, U, Basu, S & Sengupta, S 2013, Medical Oncology, vol 30, no. 2, 567. DOI:

Design principles for clinical efficacy of cancer nanomedicine: A look into the basics
Sengupta, S & Kulkarni, A 2013, ACS Nano, vol 7, no. 4, pp. 2878-2882. DOI: